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Abstract. We develop a statistical approach for description of dense structures (cores) in
molecular clouds that might be progenitors of stars. Our basic assumptions are a core mass-
density relationship and a power-law density distribution of these objects as testified by nu-
merical simulations and observations. The core mass function (CMF) was derived and its slope
in the high-mass regime was obtained analytically. Comparisons with observational CMFs in
several Galactic clouds are briefly presented.

1. INTRODUCTION

Molecular clouds (MCs) are the typical regions of star formation in galaxies. Re-
cent high-resolution observational studies in the Milky Way reveal that MCs exhibit
an extremely complex, clumpy and often filamentary structure (e.g. André et al.
2010, Mensh’chikov et al. 2010), with column and spatial densities varying by many
orders of magnitude. The detected large non-thermal linewidths which scale with the
size of the cloud or of its larger substructures (e.g. Larson 1981, Solomon et al. 1987,
Bolatto et al. 2008) have been interpreted as indicators of the presence of supersonic
turbulence. Numerous works in the last two decades have demonstrated that this
supersonic turbulence is among the primary physical agents regulating the birth of
stars. It creates a complex network of interacting shocks, where dense cores form at
the stagnation points of convergent flows. Thus, although at large scales turbulence
can support MCs against contraction, at small scales it can provoke local collapse
of the emerging prestellar cores. Hence, the timescale and efficiency of a protostar
formation depend strongly on the wavelength and strength of turbulent driving source
(Klessen, Heitsch & Mac Low 2000, Krumholz & McKee 2005).

An important structural parameter in analytical and semi-analytical models of
star formation in MCs (e.g. Padoan & Nordlund 2002, Hennebelle & Chabrier 2009,
Veltchev, Klessen & Clark 2011) is the probability density function (ρ-PDF), which
gives the probability to measure a given density ρ in a cloud volume dV . As demon-
strated from many numerical simulations, its shape is approximately lognormal in
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isothermal, turbulent media that are not significantly affected by the self-gravity (e.g.
Vázquez-Semadeni 1994, Padoan, Nordlund & Jones 1997, Ostriker, Gammie & Stone
1999, Federrath, Klessen & Schmidt 2008). Its lognormality should correspond to the
same feature of the observed probability distributions of the column density N (N -
PDFs) in MCs, due to the correlation between the local values of ρ along a single line
of sight (Vázquez-Semadeni & Garćıa, 2001).

On the other hand, it has been argued that the PDF displays scale-dependent
features and/or its shape evolves significantly in time (Federrath, Klessen & Schmidt
2008, Pineda et al. 2010). The lognormality is typical in the low-density, predomi-
nantly turbulent regime, whereas at higher column densities a power-law tail is emerg-
ing. Such high-density power-law (PL) tail is a characteristic feature of N -PDFs in
evolved MCs where star formation processes already occur or just start (Kainulainen
et al. 2009, Froebrich & Rowles 2010). That is confirmed as well from analysis
of numerical simulations of clouds dominated by gravity (Ballesteros-Paredes et al.
2011). A consistent theory of cloud structure must take into account the character-
istics sketched above. Probing the N - and ρ-PDFs can be used to set up constraints
to analytical star formation theories.

In this work a statistical approach is suggested to derive the mass function of high-
density (prestellar) cores that are possible progenitors of stars. Our starting point is
a description of the PL tail of the ρ-PDF that is representative for the MC regions
populated by these objects.

2. STATISTICAL DESCRIPTION OF DENSE CORES

2. 1. DESCRIPTION OF THE HIGH-DENSITY POWER-LAW TAIL OF THE PDF

Kritsuk, Norman & Wagner (2011) showed that the ρ-PDF evolves from purely log-
normal shape to a combination of a lognormal ‘hat’ and a PL tail. Schematic rep-
resentation of this distribution is given in Fig. 1. We use a standard designation
of the logarithmic normalized density: s ≡ lg(ρ/ρ0), where ρ0 is a normalization
unit. Parameters of the PL tail are the lower (slow ≡ lg(ρ1/ρ0)) and the upper limit
(sup ≡ lg(ρ2/ρ0)) of the high- density range and its slope q. Thus, the PL tail is
described by:

dPs = As 10qs ds = As

( ρ

ρ0

)q

d lg
( ρ

ρ0

)
, (1)

where the coefficient As = (q ln 10)/(10qsup−10qslow) is obtained from the requirement∫ sup

slow
dPs = 1.
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Figure 1: Schematic representation of the ρ–PDF as a combination of a lognormal
function with a power-law tail in the high-density part.

2. 2. CORE MASS-DENSITY RELATIONSHIP

In observational studies, the internal structure of MCs is usually described by a sam-
ple of discrete condensations, delineated through different procedures and labelled
‘clumps’ or ‘cores’. In our approach, the set of individual clumps in a considered vol-
ume is represented by an ensemble of statistical, not individual objects as the physical
characteristics of both groups obey the same statistical relations (e.g. size-mass rela-
tion, density distribution). Then the ρ-PDF corresponds to the density distribution
of statistical clumps. Those with densities in the range of the PL tail are dense cores
and hereafter we label them just “cores” for simplicity.

Our basic physical assumption is the existence of a core mass-density relationship:

lg
( ρ

ρ0

)
= x lg

( m

m0

)
(2)

where m0 is an arbitrary unit of normalization and the power-law index x is negative
and assumed to be fixed within the whole PL tail (Lombardi, Alves & Lada, 201).
Further we adopt the natural presupposition about a statistical relation between core
masses m, densities ρ and sizes l,

m

m0
=

ρ

ρ0
·

( l

l0

)3

, (3)

and obtain by use of Eq. 2 core size-density and size-mass (with size normalization
unit l0) as well:
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lg
( ρ

ρ0

)
=

3x

1− x
lg

( l

l0

)
, (4)

lg
( m

m0

)
=

3
1− x

lg
( l

l0

)
. (5)

Taking into account the one-to-one correspondence between the core quantities ρ,
m and l, one derives from Eqs. 1, 2 and 4 the probability distributions of core masses
and sizes:

dP (m) = Am

( m

m0

)qx

d lg
( m

m0

)
, (6)

dP (l) = Al

( l

l0

)q 3x
1−x

d lg
( l

l0

)
, (7)

where Am and Al are calculated from the normalization of probability measures. Note
as well the obvious relation: dPs = dP (m) = dP (l). It defines the distributions of
core masses and sizes in the PL tail which we label hereafter m-PDF and l-PDF,
respectively.

It seems natural to choose the mean density of the cloud 〈ρ〉 and a fixed fraction
κ of its size L as normalization units (Veltchev, Klessen & Clark, 2011):

ρ0 ≡ 〈ρ〉 , l0 ≡ κL (8)

2. 3. AVERAGED CORE QUANTITIES

The average core density could be calculated in two alternative ways:
Arithmetic average:

( ρ

ρ0

)
ar

≡ As

ρ2∫

ρ1

( ρ

ρ0

)
·
( ρ

ρ0

)q

d lg
( ρ

ρ0

)
=

( q

q + 1

)(ρ1

ρ0

)[
(ρ2/ρ1)q+1 − 1
(ρ2/ρ1)q − 1

]
, (9)

Logarithmic average: it is a generalization of the geometric average in case of con-
tinuous density distribution and is defined as:

( ρ

ρ0

)
lg

≡ 10 lg(ρ/ρ0) , where lg
( ρ

ρ0

)
= As

ρ2∫

ρ1

lg
( ρ

ρ0

)
·
( ρ

ρ0

)q

d lg
( ρ

ρ0

)
=⇒

( ρ

ρ0

)
lg

= exp
(
− 1

q

)
·
(ρ2

ρ0

) (ρ2/ρ0)q

(ρ2/ρ0)q−(ρ1/ρ0)q
(ρ1

ρ0

)− (ρ1/ρ0)q

(ρ2/ρ0)q−(ρ1/ρ0)q

. (10)

Analogically, one can define and calculate arithmetic and logarithmic average of core
mass ans size by use of Eqs. 6 and 7. It is important to note that the approach of
logarithmic averaging leads to a physically natural relationship:

( m

m0

)
lg

=
( ρ

ρ0

)
lg

·
( l

l0

) 3

lg

. (11)
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The transformation from dimensionless to physical quantities is independent on the
averaging approach: ρ = ρ0 (ρ/ρ0), m = m0 (m/m0), l = l0 (l/l0). Recalling Eq. 3,
one obtains:

m

ρ l3
=

m0

ρ0 l30
=

m

ρ̄ l
3 . (12)

We point out that the second sign of equality in this equation holds only in case of
logarithmic averaging (cf. Eq. 11).

2. 4. RELATION BETWEEN THE NORMALIZATION UNITS AND THE FORMULA FOR

TOTAL NUMBER OF CORES

The core mass is a fundamental non-observable quantity and it is crucial to avoid ar-
bitrariness of choice of its normalization unit. Therefore we derive a relation between
ρ0, l0 and m0 using the requirements for volume and mass conservation considering
the whole PL tail. Its total volume Vtot is calculated as follows:

Vtot =
∑

l−PDF

l3 Nl = l30Ntot

∑

l−PDF

( l

l0

)3 Nl

Ntot
= l30Ntot

l2∫

l1

( l

l0

)3

dP (l) ,

where Nl is the number of cores with size l and Ntot is a measure of the total number
of cores. The limits l1 and l2 correspond to the density limits ρ1 and ρ2 according to
Eq. 4 and one obtains after integration:

Vtot = l30Ntot ·
qx

1−x
qx

1−x + 1

[
(ρ2/ρ0)q+ 1−x

x − (ρ1/ρ0)q+ 1−x
x

(ρ2/ρ0)q − (ρ1/ρ0)q

]
≡ l30Ntot ·Q(q, x) . (13)

Analogically, the total mass of the cores is calculated through:

Mtot =
∑

m−PDF

mNm = ... = m0Ntot · qx

qx + 1

[
(ρ2/ρ0)q+ 1

x − (ρ1/ρ0)q+ 1
x

(ρ2/ρ0)q − (ρ1/ρ0)q

]
. (14)

In view of Mtot = ρ̄ · Vtot = ρ0 · (ρ/ρ0) · Vtot, we get the relation between the
normalization units:

m0

ρ0 l30
=

ρ0

ρ1

( ρ

ρ0

) qx + 1
(q − 1)x + 1

·
[

(ρ2/ρ1)q+ 1−x
x − 1

(ρ2/ρ1)q+ 1
x − 1

]
(15)

Referring to Eq. 13 and the relation: rρ0V = rM = Mtot = ρ0 · (ρ/ρ0) · Vtot , where
M and V are the mass and volume of the whole cloud, we obtain the formula for total
core number as follows:

Ntot =
r

κ3

[( ρ

ρ0

)
Q(q, x)

]−1

, (16)

where the filling factor r accounts for the mass fraction of cores within the whole
cloud and the density average could be arithmetic as well logarithmic.
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3. DERIVATION OF THE CORE MASS FUNCTION

3. 1. TOTAL NUMBER OF CORES AND SCALES DEFINED BY CHOSEN DENSITY

THRESHOLD

We consider an MC as a hierarchical set of spatial scales. They are defined as effective
sizes of subregions (or a set of subregions) in the cloud delineated through chosen
density thresholds. Thus, a fixed density ρ′ corresponds to a scale which contains
the mass of the whole PL-tail substructure with densities in the range ρ′ ≤ ρ ≤ ρ2.
Since the mass-density power-law index x is negative, the large the density of a core
the lower its mass. To derive the cumulative CMF correctly, one must take into
account the contribution of each spatial scale in the hierarchical structure defined
by threshold ρ′. The latter is a product of the total number of scales Nscales(ρ′)
contained in the volume over the threshold ρ′ and the total number of cores Ntot(ρ′)
at each scale. Repeating the procedure in the previous sections for a subsection of the
PL tail [ρ′, ρ2], one obtains Ntot(ρ′) according to Eq. 16 while r, (ρ/ρ0) and Q(q, x)
are functions of the given ρ′ (instead of ρ1):

Ntot(ρ′) =
r(ρ′)
κ3

[( ρ

ρ0

)
(ρ′) ·Q(q, x, ρ′)

]−1

. (17)

Letting ρ′ ¿ ρ2, it follows in both approaches of averaging that (ρ/ρ0)(ρ′) ∝ (ρ′/ρ0)
(Eqs. 9 and 10) and Q(q, x, ρ′) ∝ (ρ′/ρ0)(1−x)/x (Eq. 13; in this context it is important
to mention that simulations predict q ≤ −1.5). In this case Ntot(ρ′) ∝ (r(ρ′)/κ3) ·
(ρ′/ρ0)−1/x.

The total number of scales Nscales(ρ′) is easily calculated from the filling factor
r and the requirement of mass conservation at each density threshold ρ′. The total
mass of cores over the given threshold ρ′ in MC with mass M and volume V is
ρ0 · (ρ/ρ0)(ρ′) · Vtot(ρ′) = Mtot(ρ′) = r(ρ′)M = r(ρ′)ρ0V whence

Vtot(ρ′) = r(ρ′) ·
[( ρ

ρ0

)
(ρ′)

]−1

V

Obviously rρ0V = Mtot = Nscales(ρ′)·Mtot(ρ′) = Nscales(ρ′)·ρ0 ·(ρ/ρ0)(ρ′)·Vtot(ρ′)
and after simple transformations one gets finally:

Nscales(ρ′) =
rV(

ρ
ρ0

)
(ρ′) · Vtot(ρ′)

= ... =
r

r(ρ′)
(18)
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3. 2. THE CUMULATIVE CMF

The cumulative CMF N (m′) is derived by counting all cores with masses in the range
m′ ≥ m ≥ m2, corresponding to densities ρ′ ≤ ρ ≤ ρ2. In our case, one has to
multiply the total numbers of cores and scales over threshold ρ′ = ρ0(m′/m0)x (Eqs.
17 and 18):

N (m′) =
r

κ3

[( ρ

ρ0

)
(ρ′) ·Q(q, x, ρ′)

]−1

∝ r

κ3

( ρ′

ρ0

)− 1
x

=
r

κ3

( m′

m0

)−1

(19)

(ρ′ ¿ ρ2)

Note that the slope Γ of a power-law differential CMF is exactly the same of its
corresponding cumulative function. In other words, we derived a differential CMF
with slope −1, typical for fractal structures (Elmegreen 1997).

In view of the high densities in the PL tail, we may assume that most (if not
all) cores are gravitationally unstable and contract in timescales given by the free-fall
time τff ∝ ρ−1/2. Then a time-weighted CMF would be more representative for results
one can expect from observations. Such time weighting can be done introducing a
weighting factor of each scale proportional to τ−1

ff ∝ (ρ′/ρ0)
1/2 ∝ (m′/m0)x/2. Then

the time-weighted cumulative CMF will have a slope modified by addend x/2:

Nτ (m′) ∝ r

κ3

( ρ′

ρ0

)− 1
x + 1

2
=

r

κ3

( m′

m0

)−1+ x
2

(20)

(ρ′ ¿ ρ2)

4. DISCUSSION

Most recent studies dedicated to the CMF show that its high-mass slope is close
or identical to that of the initial stellar mass function Γ = −1.35 (Salpeter 1955).
In Table 1 we illustrate the predictive capability of our model in comparison with
CMFs, derived in some observational works and from simulations. The derived slopes
and their variations could be explained by variations of the core mass-density power-
law index in the range 0 & x & −0.7 (with a single exception with an extreme value)
which is consistent with the typical values of this quantity for the inner parts of several
MCs as derived by Donkov, Veltchev & Klessen (2011) and testified by comparison
with the observational study of Lombardi, Alves & Lada (2010).

These preliminary results are stimulating to develop further our model, including
results from recent numerical simulations and/or analytical estimates of the time
evolution of the ρ-PDF (Girichidis et al. 2012).
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Table 1: Slopes of CMFs derived from various authors in comparison with our model
predictions.

Galactic MC Ref. Note Slope of the CMF x
Pipe 1 −1.35 −0.7

Orion 2 −1.35 −0.7

Orion A 3 −1.3± 0.3 −0.6±−0.6

Perseus 4 (a) lognormal −1.± 0.1 ∼ 0
(b) time-weighted −2.15± 0.08 ∼ −2.3

Ophiuchus 5 time-weighted −1.35 −0.7

Perseus, Serpens, 6 −1.3± 0.4 −0.6± 0.8
Ophiuchus

Simulations 7 −1.15 ≤ Γ ≤ −1.35 −0.3 ≥ x ≥ −0.7
(PP, PPV)

[1] Alves, Lombardi & Lada 2007, [2] Nutter & Ward-Thompson 2007, [3] Ikeda & Kitamura

2009, [4] Curtis & Richer 2010, [5] André et al. 2007, [6] Enoch et al. 2008, [7] Smith, Clark

& Bonnell 2008
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