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Abstract. Precession is the secular and long-periodic component of the motion of the Earth’s
spin axis in space, exhibiting a motion of about 50" /year around the pole of the ecliptic. All
precession models, used in astronomy so far (Newcomb, IAU 1976, IAU 2006) approximate
this motion by polynomial expansions of time. These models are however valid, with very high
accuracy, only in the close vicinity of the reference epoch J2000.0. For epochs that are more
distant (several centuries), this approximation quickly deviates from reality. As a reaction to
this problem, a new model, comprising very long-period terms fitted to a numerical integration
of the motion of solar system bodies, has recently been developed by the present author in
cooperation with N. Capitaine (France) and P. Wallace (United Kingdom) and published in
the European journal Astronomy and Astrophysics. A shortened description of the new model,
including an evaluation of its accuracy, is presented.

1. INTRODUCTION

The transformation between the terrestrial and celestial reference frame is given
by five Earth Orientation Parameters (see Fig. 1). They define the position of the
spin axis in the Earth’s body (polar motion), the angle of proper rotation (Universal
Time) and the position of the spin axis in space (precession-nutation). The position
of the axis of rotation of the Earth exhibits, under the dominant influence of the
Moon and the Sun, a rather complicated motion in space. Its very long-periodic part,
precession, is the slow motion of the pole of Earth’s rotation P around the pole of the
ecliptic C. The angle between the two poles (obliquity) is approximately constant,
today roughly equal to 23.5°. Precession was known already to Hipparchos, since it
causes the growth of ecliptical longitudes of the stars by about 50" per year; the spin
axis makes one revolution in about 26 thousand years (Platonic year). This motion is
in reality rather complicated: the pole of the ecliptic itself is not fixed with respect to
the stars — it exhibits precession of the ecliptic (formerly called planetary precession).
It is dominantly caused by the attractive forces of all bodies of the solar system on the
motion of the Earth around the barycenter of the solar system. The axis of rotation
of the Earth exhibits a motion around the moving pole of ecliptic under the torques
exerted by the Moon, Sun, and planets on the rotating oblate Earth, precession of
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Figure 1: Earth Orientation Parameters.

the equator (formerly luni-solar precession). Neither the obliquity, nor the rate of
precession are strictly constant.

All precession models used so far are expressed in terms of polynomial development
of time. The most recent model TAU 2006 (Capitaine et al. 2003) is very accurate,
but usable only for a limited time interval (several centuries around the epoch J2000);
its errors rapidly increase with longer time spans. In reality, precession represents a
very long-periodic process, whose periods reach hundreds of centuries. This can be
demonstrated by comparison with the numerically integrated equations of motion of
the Earth in the solar system and its rotation (Vondrédk et al. 2009, 2011a). Fig. 2
(here reproduced from paper by Vondrdk et al. 2009) displays the motion of the
axis of rotation of the Earth during about 1.5 precession cycles, as given by long-
term numerical integration (LT integration) and different analytical models — Lieske
et al. (1977), Simon et al. (1994), and two models by Capitaine et al. (2003):
one computed from the expansions of precession angles (4, 04, and one from the
expansions of direction cosines X 4, Y4. The position of the axis of rotation at the
basic epoch J2000.0 is the point X = Y = 0, pole of the ecliptic is located in the
center of the figure. The models are not graphically distinguishable in the interval
+50cy around J2000, but they start to differ significantly outside the interval £100cy.

We assume that precession includes only periods longer than 100 centuries; shorter
ones represent nutation. Our aim was to find relatively simple expressions of different
precession parameters, with accuracy comparable to the IAU 2006 model near the
epoch J2000.0, and lower, slowly degrading accuracy outside the interval £1000 years
(up to several minutes of arc at the extreme epochs 200 thousand years). The
paper describing the new model in detail has recently been published by Vondrdk
et al. (2011b). Below is given an abridged description of the model, followed by a
new assessment of its accuracy and comparison with other models.
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Figure 2: Different models of precession in the interval +200cy around J2000.0, and
comparison with numerical integration.

2. NUMERICAL INTEGRATION, LONG TERM EXPRESSIONS

We used the numerically integrated values of the following four parameters
- the precession of the ecliptic P4 = sinmgsinll4, Q4 = sinmwy cosIl,, calculated
with the Mercury 6 package by Chambers (1999), considering only the eight ‘clas-
sical’ planets, and
- the general precession/obliquity pa, e, computed by Laskar et al. (1993),
to calculate time series for all other precession parameters in the interval +200 thou-
sand years from J2000.0, with 100-year steps. The numerical integrations depend on
the initial conditions that are based on observations. In the first case, these are the
optical and radar observations of the planets, in the second one the observations of
the Earth orientation parameters by VLBI. Namely the latter led to small corrections
that we had to apply to Laskar’s values of pa,ea (due to a slightly different value of
dynamical ellipticity of the Earth, the rate of change of the dynamical form factor Js,
planetary tilt effects and the tidal effects, neglected in Laskar’s solution).

To estimate the accuracy of the numerical integrations above, we tested them
against the values obtained independently and found that the differences from other
solutions at both extreme epochs do not exceed the level of 20 arcseconds. The ne-
glected perturbations by asteroids have recently been shown by Aljabaae and Souchay
(2012) to be very small - peak to peak quasi-periodic effects in Earth’s inclination
are smaller than 0.05”, the periods are typically shorter than 100 years. Thus we
concluded that the accuracy of the numerical integration, including both numerical
errors and imperfections of the models used, is sufficient for our purpose.

The central part of the data (£1000 years from the epoch J2000.0) was replaced by
TAU 2006 values to make the new model consistent with the recent model accepted by
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Figure 3: Precession parameters.

the TAU. From the values of the precession parameters Py, Qa, p4 and ey, different
precession parameters were calculated in the interval +200 millennia from J2000.0
with 100-year steps, solving several spherical triangles depicted in Fig. 3, in which
C, and C denote the positions of the pole of ecliptic at the epochs J2000.0 and T,
respectively, P,, P; are the poles of rotation of the Earth and Y,, T vernal points at
the same epochs, and CIO stands for Celestial Intermediate Origin.

We proceeded from the bottom of the figure upwards and obtained first the aux-
iliary angles «, 8, i from the spherical triangle YY,N, then the angles 7, § by solving
the triangle YY,P;, and, from triangle T,P;P,, we got the precession angles 04,(4.
From the triangle P,P;C, then followed the precession parameters wy, 14 and from
the triangles P,CC,, P,P;C, the parameters x4, z4-

Instead of precession angles 8 4, z4, (4 we used direction cosines X 4= sinf 4 cos (4,
Yi= —sinfssin(y, Va= sinf4sinz4, W= sin 4 cos z4; the angles 64, (4 and z4
exhibit large discontinuities (of about 94° for 64, 180° for (4 and z4) at irregular
intervals: there is also a change of sign approximately each 26,000 years. This makes
the long-term analytical approximation of these precession angles extremely difficult,
while the direction cosines are continuous.

The time series of all parameters calculated above were then approximated by a
cubic polynomial plus up to 14 long-periodic terms of the general form (T is the time
in centuries from J2000.0, P; is the period and n the number of periodic terms)

a+bT + cT? +dT? + ) (Cicos 20T/ P; + S;sin 20T/ P;) (1)
i=1

so that the fit is best around J2000.0. This was assured by choosing appropriate
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weights (equal to 10* in the central part and to 1/72 outside this interval). The
periods were found beforehand using the Vani¢ek’s method (Vanitek 1969), based on
the least-squares method, as modified by Vondrak (1977), and verified with the ones
found by Laskar et al. (1993, 2004) from much longer time series. Weighted least-
squares estimation (with fixed values of the periods) was then used to determine the
cosine/sine amplitudes of individual periodic terms.

We derived the long-term expressions of the following precession parameters (some
of them being precession angles, some direction cosines, expressed in terms of certain
precession angles):

- precession angles: pa,£4,wa, ¥4, XA, 9,7, Y;
- direction cosines: P4 = sinmasinlly, Q4 = sinmgcoslla, X4 = sinf4 cos(a,

Y4 =sinfssinCa, Vo =sinfasinza, Wa =sinfgcosza.

We also derived the expression for the CIO locator (the part that is due to precession),
the small angular distance between the points ¥ and CIO, s4. All these angles are
depicted in Fig. 3.

3. EXAMPLES

We present here, as typical examples, the long-term expressions of direction cosines
of the pole of the ecliptic C, P4, Q4, and of the Earth’s spin axis Py, X4,Y4 (both
expressed in arcseconds):

The long-term expressions for the precession of the ecliptic are given as

Pa 5851.607687 — 0.1189000T — 0.00028913T2 + 101 x 10~°T% + 3, (2)
Qa = —1600.886300 + 1.1689818T — 0.0000002072 — 437 x 10~°T% + Y,

where the cosine/sine amplitudes of the periodic parts 3 p, >, are given in Tab. 1.
Names of some of the terms in column 1 come from Laskar et al. (1993, 2004). The
comparison of the long-term model of the precession of the ecliptic, P4 (top), Qa

Table 1: Periodic terms in Py, Q4

term C/S P4l Qal"”] Plcy]

o3 C1  -5486.751211 -684.661560 708.15
S1 667.666730 -5523.863691

—s1 Ca -17.127623 2446.283880  2309.00

Sa  -2354.886252 -549.747450
Cs -617.517403 399.671049  1620.00
S3 -428.152441 -310.998056

—56 Cy 413.442940 -356.652376 492.20
Sy 376.202861 421.535876
Cs 78.614193 -186.387003  1183.00
Ss 184.778874 -36.776172
Ce -180.732815 -316.800070 622.00
Se 335.321713 -145.278396

Cr -87.676083 198.296701 882.00
S7 -185.138669 -34.744450
Cs 46.140315 101.135679 547.00
Sg -120.972830 22.885731
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Figure 4: Long-term model of precession parameters P4, Q4 — new model (dotted),
integrated values (solid), and TAU 2006 (dashed).

(bottom) with integrated values and the TAU 2006 model is depicted in Fig. 4. The
model and integrated values are so close that they are graphically indistinguishable.
One can readily see that the expressions for P4, @ 4 of IAU 2006 model quickly deviate
from the former ones. The pole of the ecliptic roughly describes a clockwise circular
motion with the amplitude of about 1.5° and period of 71 millenia.

The expressions for the precession of the equator are

X, = 5453.282155 4 0.4252841T — 0.00037173T2 — 152 x 10797 + 3, (3)
Y4 = —73750.930350 — 0.7675452T — 0.00018725T2 4 231 x 10~°T% + Y,

where the cosine/sine amplitudes of the periodic parts ), >, are displayed in
Tab. 2. The comparisons of the long-term models of precession angles X 4(top) and
Y4 (bottom) are shown in Fig. 5. Again, the model is graphically indistinguishable
from the numeral integration. The pole of rotation describes a clockwise motion
around the pole of the ecliptic, once per 26 millenia, its radius quasi-periodically
changes between 22.5° and 24.2°, with period of about 71 millenia. The speed of the
motion (general precession) is also not constant. The behavior of other precession
parameters is similar to these.

4. PARAMETRIZATION OF PRECESSION MATRIX

Different combinations of the precession angles derived above can be used to com-
pute precession matrix P, necessary to transform coordinates of celestial bodies from
the fundamental epoch J2000.0 to any epoch T

- ‘Lieske’ parametrization (Lieske et al. 1977):

P= Rg(sz).RQ(QA).Rg(ng),
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Table 2: Periodic terms in X 4, Y4

term c/s Xal”] Yal"’] Plcy]

p Ch -819.940624  75004.344875 256.75
S1 81491.287984 1558.515853

—03 Co -8444.676815 624.033993 708.15

Sa 787.163481 7774.939698
p—g2+9s C3 2600.009459 1251.136893 274.20
S3 1251.296102  -2219.534038
p+92—9s Cy 2755.175630  -1102.212834 241.45
S4  -1257.950837  -2523.969396

—s1 Cs -167.659835  -2660.664980  2309.00
S5 -2966.799730 247.850422

—S6 Cs 871.855056 699.291817 492.20
Se 639.744522 -846.485643

p+ 54 Cr 44.769698 153.167220 396.10
S7 131.600209  -1393.124055

p+s1 Cy -512.313065 -950.865637 288.90
Ss -445.040117 368.526116

p— s1 Cy -819.415595 499.754645 231.10

So 584.522874 749.045012
Cio -538.071099 -145.188210  1610.00

S10 -89.756563 444.704518
C11 -189.793622 558.116553 620.00
S11 524.429630 235.934465

2p + s3 Ci2 -402.922932 -23.923029 157.87
S12 -13.549067 374.049623

Ci3 179.516345 -165.405086 220.30
S13 -210.157124 -171.330180
Cla -9.814756 9.344131  1200.00
S14 -44.919798 -22.899655

- ‘Capitaine’ parametrization (Capitaine et al. 2003):
P = Rg(XA).Rl(—wA).Rg(—d)A).Rl (e’:‘o),
- ‘Williams-Fukushima’ parametrization (Fukushima 2003):
P =Ri(—c4)Rs(—¢).Ri(p) Rs(7),
in which R; () denotes the rotation matrix around ¢—th axis by angle . In the classi-
cal ‘Lieske’ parametrization the precession angles z4,0 4, (4 can be easily expressed in
terms of direction cosines X4, Y4, Va, Wa. Quite naturally, all these methods should
theoretically lead to the same result.

5. ESTIMATION OF MODEL ACCURACY,
COMPARISON WITH OTHER MODELS

In Vondrék et al. (2011b) the accuracy was estimated using a simple expression
based on the average uncertainty of all parameters (derived from the fit to integrated
values) and weights at different epochs. The uncertainty at epoch T was computed
as oo /w(T), where o, = 0.365” was the average unit-weight uncertainty estimated
from the fit of all precession parameters, and w(T') the weight defined in Section 2.

Here a rigorous formula is used, based on the full variance-covariance matrix. Thus
all correlations existing between estimated parameters are taken into account. For
each of the parameters we first estimate the unit-weight uncertainty o, (from the fit
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Figure 5: Long-term model of precession parameters X 4, Y4 — new model (dotted),
integrated values (solid), and IAU 2006 (dashed).

to numerically integrated values) and then the uncertainty at the epoch T' as

n+4 n+4
02(T):UgZZfiijij7 (4)
i=1 j=1
where fi = 1, fo =T, fs = T?, f1 = T3, f5 = cos(2nT/Py), fe = sin(2xT/Py) ...,
and @;; is the element of the matrix inverse to the matrix of normal equations. The
result is depicted in Fig. 6, where the accuracy of each estimated parameter is given
and compared with the one from Vondrdk et al. (2011b).
It is clear from the figure that our previous estimate was too conservative — the
rigorous estimate yields much smaller uncertainties for all parameters, in some cases
as much as two orders of magnitude lower.
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Figure 6: Estimated accuracy of all precession parameters.
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Figure 7: Comparison of different precession models with integrated values.
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Figure 8: Comparison of precession models — closeup of the central part.

The comparison of the new long-term solution with other models of precession (X 4
and Y4 parameters only) is given in Figs 7 and 8. X 4 and Y4 values as computed from
the values of (4,04 by Lieske et al.(1977), Simon et al. (1994) and Capitaine et al.
(2003) (denoted as Lieske, Simon, IAU2006¢¢), computed directly from the X ,Ya
expressions by Capitaine et al. (2003), denoted as IAU2006 xy, and by Vondrék et al.
(2011Db), denoted as LT model, are compared with the numerically integrated values.

Fig. 7 depicts the comparison in the interval £300 centuries from J2000.0, while
Fig. 8 shows close-up of the central part (£10 centuries from J2000.0). One can see
that the direct TAU 2006 expressions for direction cosines X 4,Y4 yield much worse
results for more distant epochs than using the expressions of ‘traditional’ precession
angles C4,04. The new LT model is indistinguishable from the integration at this
scale, whereas all other models display deviations reaching 50 degrees for epochs more
distant than 200 centuries. Fig. 8 clearly demonstrates the correction of precession
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rate, and also the quadratic term in obliquity, that were recently introduced in more
recent models, with respect to Lieske et al. (1977). On the other hand, all models
shown are consistent with the numerically integrated precession within one arcsecond
or so in the interval +10 centuries from J2000.0.

6. CONCLUSIONS

The presently adopted IAU 2006 model provides high accuracy over a few centuries
around the epoch J2000.0. For longer periods, polynomial development of precession
angles (4, 04 should be preferable to direct X 4, Y4 expressions. More than five thou-
sand years from the fundamental epoch J2000.0 the model TAU 2006 rapidly goes
away from reality. The newly proposed model of precession, developed by Vondrak
et al. (2011b) and valid over £200 millennia, is presented. Its accuracy is comparable
to TAU 2006 model in the interval of several centuries around J2000.0, and it fits
the numerically integrated position of the pole for longer intervals, with gradually
decreasing accuracy (several arcminutes £200 thousand years away from J2000.0).
The estimated accuracy, as given in paper (Vondrak et al. 2011b), is too conserva-
tive. It is necessary to add that the new model is strictly valid only in the interval
4200 millenia from J2000.0. Outside this interval, its uncertainties rapidly grow, due
to strong correlations between the estimated sine/cosine amplitudes of different terms.
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