Optical spectroscopy and X-ray observations of the D-type symbiotic star EF Aql

K. A. Stoyanov¹

in collaboration with K. Iłkiewicz², G. J. M. Luna³,⁴,⁵, J. Mikołajewska², K. Mukai⁶,७,

J. Martí⁸, G. Latev¹, S. Boeva¹, R. K. Zamanov¹

Symbiotic stars

S-type - normal red giant
D-type - Mira variable
D'-type - F or G giant

Reinmuth (1925) - variable star

Konigstuhl Observatory

Reinmuth (1925) - variable star

Le Bertre et al. (2003) - O-rich Mira-type variable

Reinmuth (1925) - variable star

Le Bertre et al. (2003) - O-rich Mira-type variable

Richwine et al. (2005) - P = 329.4 d

Reinmuth (1925) - variable star

Le Bertre et al. (2003) - O-rich Mira-type variable

Richwine et al. (2005) - P = 329.4 d

Margon et al. (2016) - bright UV flux, prominent Balmer emission lines and

[O III] λ5007 emission

Reinmuth (1925) - variable star

Le Bertre et al. (2003) - O-rich Mira-type variable

Richwine et al. (2005) - P = 329.4 d

Margon et al. (2016) - bright UV flux, prominent Balmer emission lines and [O III] $\lambda 5007$ emission

Zamanov et al. (2017) - optical flickering

Optical photometry of EF Aql

ASAS ASAS-SN

Rozhen NAO

Photometry of EF Aql: period of pulsations

Improved period - 320.4 d
The period of pulsations and the amplitude are typical for Mira-type variables (Whitelock et al. 2003)

Optical spectroscopy of EF Aql: SALT + HRS

2019 June 7, July 9 and July 14: R ~ 40 000 and wavelength coverage 4000 - 8800 Å

Optical spectroscopy of EF Aql

Possible ionization-potential-dependent stratification?

The [O III] λ 5007 emission line is similar to that in PNe.

Distance and interstellar reddening

Using $K = 4.78 \pm 0.58$ (2MASS; DENIS) and $M_K = -7.69$ (from Whitelock et al. 2008 using P = 320.4 d)

Interstellar + circumstellar extinction: $(J - K)_0 = 0.71 \log P - 0.39$ (Whitelock et al. 2000) J - K = 1.71 (2MASS; DENIS)

$$E (J - K) = 0.32 \pm 0.10$$

$$EW(Na D1) = 0.31 - 0.45 Å$$

Temperature and luminosity of the WD

The minimum temperature is set by the maximum ionization potential observed in the spectrum that in EF Aql is 35.12 eV corresponding to the [O III] lines. This gives a temperature $T_{wp} \ge 35~000~\text{K}$.

The lack of any traces of He II lines and the presence of strong He I lines means that $T_{wp} \le 60\,000$ K.

The ratio $F(\text{He I } 5876)/F(H_{\beta})$ indicates $T_{wp} \sim 55~000~\text{K}$.

 T_{WD} in symbiotic systems - 35 000 - 500 000 K L_{WD} in symbiotic systems - 0.3 - 37 000 L_{\odot}

The WD in EF Agl is with low luminosity

Mass-loss rate

Whitelock et al. (1994): a correlation between the mass-loss rate and the K - [12] colour:

Larger K - [12] means thicker shell K - [12] = 2.89 (2MASS; IRAS)

mass-loss rate $\sim 2.5 \cdot 10^{-7} M_{\odot} \text{ yr}^{-1}$

Single O-rich Miras - 10^{-7} - 10^{-5} M_{\odot} yr⁻¹ Miras in Symbiotic systems - ~ 3.2 10^{-6} M_{\odot} yr⁻¹

supports the idea for a low-luminosity system

X-ray and UV observations of EF Aql

2019 Sep 12
ToO mode
First ever pointed X-ray observations
XRT - photon-counting mode
UVOT - imaging mode using
UVM2 filter centered at 2200 Å
Total exposure of 3.8 ks

No detection of EF Aql in X-rays
Assuming temperature of the plasma 10
KeV, upper limit of the flux is 10-12 erg

faintest δ-type symbiotic star detected so far

EF Aql was detected with UVOT - UVM2 mag is 14.05 Got 0.2 UVM2 mag fainter during the observations - maybe caused by a flickering from the accretion disc

Conclusions:

- $T_{WD} \sim 55~000~K$ and $L_{WD} \sim 5.3~L_{\odot}$
- Possible ionization-potential-dependent stratification
- Improved period of pulsations 320.4 ± 0.3 d
- No detection in X-rays, faintest δ -type symbiotic star detected so far
- UVM2 = 14.05 mag
- d ~ 3.1 kpc
- Mass-loss rate ~ 2.5 10⁻⁷ M_® yr⁻¹

The optical and X-ray observations point that EF Aql is an accretion-powered symbiotic star without shell burning!!!

