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Abstract. Clues to understand physics and evolution of molecular clouds can be provided 
through analysis of the probability density functions of mass density (ρ-pdf) and of column 
density (N-pdf). Many numerical simulations show that a power-law tail (PLT) emerges at 
the high-density end of the ρ-pdf at advanced evolutionary stages of star-forming clouds. 
Later, at the stage of collapse of first formed protostellar cores, a second, shallower PLT 
appears (Kritsuk et al. 2011). Double PLTs have been also detected in N-pdfs from 
Herschel maps in several star-forming regions (Schneider et al. 2015, 2020).  

However, it is difficult to estimate the parameters of the second PLT due to resolution 
constraints. We propose a technique for extraction of a second PLT in ρ/N-pdfs which is 
an extension of the method of Veltchev et al. (2019) for extraction of single PLTs from 
arbitrary density distributions. The technique is applied to a set of hydrodynamical 
simulations of isothermal self-gravitating clouds. The results confirm the emergence of a 
shallower second PLT in ρ-pdfs at timescales, comparable with the free-fall time of the 
average density in the box. Second PLTs are detected also in N-pdfs derived from 
Herschel maps of a low-mass (Pipe) and high-mass (M 17) star-forming regions. 
 

1. INTRODUCTION 
 

Stars are born in molecular clouds (MCs), therefore the study of star formation 
requires understanding of the morphological and kinematical evolution of MCs. 
Initial stage of cloud formation is the compression of interstellar warm atomic gas 
by supersonic flows followed by rapid cool down due to non-linear thermal 
instabilities (see Ballesteros-Paredes et al. 2020, for a review). Stars begin to form 
when self-gravity in the cloud takes slowly over and local sites of gravitational 
collapse emerge. This evolution could be described in terms of detection and 
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physical parameters of substructures (clumps, cores) or in terms of indicators of 
general structure. 

An important indicator of general cloud structure is the probability distribution 
function (pdf) of mass density (ρ-pdf) and its analysis can give clues to understand 
the physics and evolution of the cloud. From observations, one could derive the 
pdf of column density (N-pdf), which turns out to be morphologically analogous 
to the ρ-pdf. In isothermal, non-gravitating fluids with well developed supersonic 
turbulence the ρ-pdf is mostly lognormal (e.g. Vázquez-Semadeni 1994, Li, 
Klessen and Mac Low 2003, Federrath et al. 2010), i.e. can be fitted by lognormal 
function of type: 

 

where s=log(ρ/ρ0) and smax are the logdensity (with normalization to the mean 
density ρ0) and its value at the distribution peak and  is the standard deviation. 
This result was confirmed by numerous simulations. At advanced evolutionary 
stages, when self-gravity becomes important in the energy balance in the cloud, a 
power-law tail (PLT) with functional form 

 

emerges at the high-density end of the pdf, where A is a constant, q is the power 
index and the deviation point (DP) sPLT from lognormality separates the two 
regimes (Klessen 2000, Kritsuk, Norman and Wagner 2011, Federrath and 
Klessen 2013). The evolution of the N-pdf turns out to be morphologically similar 
(see, e.g, Ballesteros-Paredes et al. 2011, Koertgen, Federrath and Banerjee 2019). 
Example of a pdf with main lognormal part and a PLT is shown in Fig. 1. 

Figure 1: N-pdf derived from a run of the SILCC (SImulating the LifeCycle of 
molecular Clouds) simulations (Girichidis et al. 2018). 

In the course of further MC evolution the main part of the ρ-pdf retains its 
(quasi-) lognormal shape. On the other hand, the slope of the PLT gets slowly 
shallower, tending toward a constant value while DP shifts to lower values. 
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Some numerical studies with high resolution (reaching down AU scales) hint 
at emergence of a second PLT at advanced evolutionary stages of star-forming 
clouds. For instance, Kritsuk et al. (2011) found that the density distribution in 
self-gravitating clouds develops an extended PLT with a slope of about −1.7 at 
high densities on top of the usual lognormal. The tail departs from the initial 
lognormal distribution already at ρ⁄ρ0 ~ 10 and continues straight for nearly 10 dex 
in p(s) and more than 6 dex in density. As the simulation progresses, the slope 
continues to evolve slowly toward shallower values reaching q=−1.67 at the end 
of the simulation. An even shallower tail is detected at densities ρ⁄ρ0 ≥ 107. This 
might indicate mass pile-up due to an additional support against gravity due to 
conservation of angular momentum (rotation of prestellar cores), strong magnetic 
fields in the densest parts of MC, change in the equation of state (non-
isothermality; see Donkov et al. in this issue) or all these factors. 
 

2. EXTRACTION OF POWER-LAW TAILS OF THE PDF  
 

There is a methodological problem with the extraction of the PLT: its 
characteristics and those of the lognormal fitting function are obviously 
interdependent. Let us review the usual procedure to extract the PLT: (i) Find the 
best lognormal fit of the main pdf part (e.g. using the χ2 goodness); (ii) Estimate 
the DP of the distribution from the lognormal fit (e.g. using the 3σ criterion, where 
σ is the Poissonian data uncertainty in the considered bin). (iii) Fit the rest of the 
distribution with a PL function. Such an approach rests on the assumption that the 
main pdf part is lognormal and thus the resulting DP and the PL slope depend on 
the parameters of the lognormal fit. However, if the PL regime is to be interpreted 
as a signature of the impact of self-gravity, then the slope value is an indicator of 
the cloud's evolutionary stage. We need a method to extract the PLT on minimal 
assumptions about the rest of the density distribution. 

Such approach was recently proposed by Veltchev et al. (2019; hereafter V19) 
and named adapted BPLFIT method. The power-law fit of a distribution (or part of 
it) is derived by use of Kolmogorov-Smirnov (KS) goodness-of-fit statistics. The 
procedure does not rule out that other, non-power-law, functions might better fit 
the observed distribution – it simply derives the range and the slope of the best 
possible power-law fit. This method can deal with large datasets of size < 105 
points from numerical simulations and high-resolution imaging of MCs and is 
applicable to linear, logarithmic and arbitrary binning schemes. Average slope and 
DP are derived as the number of bins is varied and are not sensitive to spikes and 
other local features of the distribution's tail. 
 
3. TECHNIQUE FOR EXTRACTION OF A SECOND POWER-LAW TAIL 
 

The adapted BPLFIT method can be elaborated further for detection of a 
second PLT (if present). The PLFIT procedure searches for the PLT of the 
considered PDF by use of the KS statistic for given lower cutoff xmin : 
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where S(xi) is the cumulative distribution function (CDF) of the data and P(x) is 
the CDF of the best-fitting power-law model in the range xi ≥ xmin. The value of xi 

≥ xmin which minimizes D and the corresponding power-law index are selected as 
DP and slope of the PLT, respectively. If no lower cutoff is introduced, xmin is 
simply the lower limit of the data set (in our case, the minimal logdensity) – V19 
extracted PLTs from numerical and observational PDFs in this way. Gradual     
increase of xmin constrains the considered data set and, hence, the set of values        
|S(xi) − P(xi)| to obtain the KS statistic. In particular, such approach may help to 
detect a second PLT corresponding to higher logdensities, for some xmin which 
exceeds the DP of the single (first) PLT.  

 
Figure 2: Illustration of the suggested method for extraction of two PLTs as 
applied to an analytic binned PDF (top panel; solid) with main part fitted by 

lognormal function (dotted) and two PLTs.  
Bottom panel displays the function |S(x) − P(x)| (see text).  
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To illustrate this we construct an analytic PDF (Fig. 2, top) whose shape and 
parameters resemble the one obtained in the numerical study of Kritsuk et al. 
(2011). The main part is lognormal while the high-density one consists of two 
PLTs with deviation points DP1 and DP2 and slopes q1 = −1.5 (typical for evolved 
self-gravitating clouds, Girichidis et al. 2014) and q2 = −1.  

An example of the function |S(x) − P(x)| for a large total number of bins (i.e. 
small bin size) is shown in Fig. 2, bottom. As expected, the value of |S(x) − P(x)| is 
large in the range x < DP1 which defines the lognormal part of the PDF. The 
deviation points of the two PLTs correspond to pronounced local minima, with a 
local maximum located in between. As long as xmin < DP1 , the adapted BPLFIT 
will extract a single PLT with DP = DP1 and slope q1 (Fig. 3). Choices of lower 
cutoffs xmin � DP1 still yield a single PLT with gradually changing parameters. 
The second PLT with DP = DP2 will be detected at a cutoff with |S(xmin)−P(xmin)| 
� |S(DP2) − P(DP2)| (arrow and dotted line in Fig. 2, bottom) – then the procedure 
selects xi = DP2 (cf. Fig. 3) since with this choice the local maximum at ρ⁄ρ0 ≈ 4 × 
104 is excluded.      

      
Figure 3: Dependence of the extracted PLT parameters on the chosen lower cutoff 

of the tested PDF (cf. Fig. 2). 
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In the next two Sections we present tests of the suggested method to numerical 
and observational data. 
 

4. RESULTS FROM NUMERICAL DATA: DENSITY PDF 
 

We use data from a set of 6 hydrodynamical simulations of self-gravitating 
clouds called HRIGT (High-Resolution Isothermal Gravo-Turbulent). The size of 
the numerical box is 0.5 pc, about the scale of typical large clumps in MCs. The 
complexity in physical modeling is reduced in favor of higher resolution and 
significantly higher adaptive refinement (from 2563 up to 327683 cells) – thus the 
resolution can reach ~3 AU in high-density zones. The gas is isothermal (T=10 K) 
and uniformly distributed at the initial point in time. The total mass in the box is 
chosen to be 85 and 426 M☉ in the different runs which corresponds to 32 and 354 
Jeans masses (MJ,0). The initial turbulent velocities are constructed in Fourier 
space with a peak of the power spectrum at k = 2, i.e. half of the box size. We 
distinguish between purely compressive, purely solenoidal and naturally mixed 
velocities (Federrath, Klessen and Schmidt 2008).  

The chosen HRIGT runs differ in total mass, realizations of velocity field, 
turbulent driving and duration in units of free-fall time tff. In general, the runs with 
total mass of 354 MJ,0 have been stopped at earlier points in time (<1.5 tff). 
Therefore one would expect that in those cases the extracted PLTs in the mass-
density pdf will be steeper. Fig. 4 demonstrates that this is indeed the case in 
regard to the first PLT. The obtained slopes are in a good agreement with the 
theoretical limit q~−1.5 for evolved self-gravitating clouds substantiated by 
Girichidis et al. (2014). 

 
Figure 4: Comparison between the slopes of the extracted first and second PLT 

from the HRIGT simulations: with 32 (open circles) and 354 (filled circles) Jeans 
masses. The corresponding final values from Kritsuk et al. (2011; dashed) and the 

limiting value from Girichidis et al. (2014; dash-dotted) are plotted. 
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     In regard to the second PLT, all HRIGT runs yield similar results, independent 
on the total mass in the box. The slopes are around -1 (and even shallower) which 
confirms the result of Kritsuk et al. (2011). 

 
5. RESULTS FROM OBSERVATIONAL DATA: COLUMN-DENSITY PDF 

 
We test the method also to N-pdfs from Herschel observations of several star-

forming regions. The results for two of them are shown in Fig. 4. The original 
maps of dust emission were obtained at four wavelengths with the instruments 
PACS and SPIRE: 160, 250, 350, and 500 μm (see Schneider et al. 2010, 2012, for 
details) and convolved to a common angular resolution of 36 arcsec. 

The PLT parameters of the first slope are consistent with the results from 
other numerical studies. On the other hand, N-pdfs derived from observations of 
regions with star-forming activity display pronounced PLTs of slopes −2 ≥ n ≥ −4 
(Schneider et al. 2013, 2015a; Pokhrel et al. 2016), also in agreement with our 
results on the PLT evolution from the HRIGT runs. 

The slope n of the N-pdf should be related to q as: 
 
 
 

assuming that that the general cloud structure can be described through a power-
law density profile (see Donkov, Veltchev and Klessen 2017, and the references 
therein). Plugging q~−1.5 (Girichidis et al. 2014) typical for advanced 
evolutionary stages in the formula above we get slopes n2 of the second PLT in 
general agreement with the extracted ones from Herschel maps (Figs. 5 and 6). 
We conclude that the adapted BPLFIT method extracts PLTs of the ρ-pdfs and N-
pdfs with slopes which are mutually consistent. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: N-pdf with two PLTs from a Herschel map of the low-mass Galactic 
star-forming region Pipe. Open circles denote bins which were excluded from 

consideration due to the poor statistics. 
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Figure 6: The same like Fig. 5 but for the high-mass  
Galactic star-forming region M17. 

 
6. CONCLUSIONS 

 
We present a novel approach for extraction of second power-law tails (PLTs) 

of the density (ρ-pdf) or column-density distribution (N-pdf) in star-forming 
clouds. The method is an extension of the adapted BPLFIT technique and was 
tested on data from numerical simulations of star-forming clouds at clump scale 
(0.5 pc; self-gravitating isothermal medium) and on observational data from 
Herschel. Our conclusions are as follows: 

 The adapted BPLFIT method can be successfully extended to 
detect a second PLT. 

 The test of this approach on numerical data with high 
resolution (HRIGT) yields PLT parameters in agreement 
with theoretical and numerical studies (Girichidis et al. 
2014, Kritsuk, Norman and Wagner 2011). 

 The application of the method on N-pdfs from Herschel 
data indicates the existence of a second PLT in N-pdfs in a 
dozen star-forming regions of different mass. (Schneider et 
al. 2020). 

 A thorough comparison between the output of the methods 
from ρ-pdfs and N-pdfs from numerical data would shed 
light on the relationship between the slopes of the extracted 
PLTs. 
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