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Introduction

 Some galaxies have magnetic fields of 
several μG.

 Their evolution is described by the so-called 
dynamo theory (Beck et al., 1996).

 It is important to describe the magnetic field 
in galaxies with such processes as star 
formation, supernova explosions, outflows 
from stars etc.



Dynamo mechanism
 The dynamo mechanism is based on joint action 

of alpha-effect and differential rotation.
 Alpha-effect transforms the angular component of 

the field to the radial one:

 Differential rotation transforms the radial field to 
angular:
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Basic equation
 The field is described by Steenbeck – Krause –

Rädler equation:
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no-z approximation
 The galaxy disc is very thin.
 We can neglect the z-component of the field.
 The z-derivatives of the magnetic field can be replaced 

by algebraic expressions (Moss, 1995; Phillips, 2001):
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System of equations

 The equations will be rewritten as:

 h is the half-thickness of the disc, α is the 
alpha-effect coefficient, η=lv/3 is the turbulent 
diffusivity coefficient.

2

2 ;
4

r
r r r

B B B B
t h h

  
    


2

2 .
4r r

B
r B B B

t r h


 
 

 
   

 



Galaxies with active processes

 Usually averaged values of the coefficients 
are used.

 This approach is useful for “calm” galaxies, 
where the kinematical characteristics are 
nearly the same in different parts of galaxies.

 If  there are active star formation, supernova 
explosions etc, the kinematical characteristics 
can differ very much.



Random coefficients

 The HII regions usually exist for quite small 
times (about 107 years). Their location can be 
described by random laws.

 Some works described the dynamo model 
with random alpha-effect (Mikhailov & 
Modyaev, 2015) and with random injections 
of the magnetic fields (Moss et al., 2015).



Diffusivity

 We describe the equations with random 
diffusivity coefficient.

 For “calm” regions v0=10 km/s, for HII regions 
v1=30 km/s.

 So for the diffusivity coefficient η=lv/3 we 
have:

η1=3η0



Dimensionless form
 We can rewrite the equations, measuring time in 

h2/η0, and neglect the diffusion in disc plane:

 Rα characterizes alpha-effect, Rω characterizes 
differential rotation, k characterizes turbulent 
diffusion.

;r
r

dB R B kB
dt    

.r

dB
R B kB

dt


  



k coefficient
 The k coefficient takes random values:

 The coefficient is constant for Δt=0.01 and after 
that renews.

 p characterizes the intensity of active processes.

7.5 with probability ;        
2.5 with probability (1 ).
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Theoretical approximations
 The field grows exponentially with velocity:

 The main features are described by the highest 
value.

 If we take Rα=1, Rω=10, the values of velocities for 
k0 and k1 will be:

γ0=0.66, γ1=-4.33
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Magnetic field for large time
 The magnetic field will be:

B(nΔt)=B(0)exp(γ(0)Δt)…exp(γ((n-1)Δt)Δt)

 With probability                        the field is:

B(nΔt)=B(0)exp(mγ1Δt)exp((n-m)γ0Δt)

 Using these values, we can average the field and its square.
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Different momentums

 Mean value:

<B(nΔt)>=B(0)exp(γ0nΔt)(1-p+pexp((γ1-γ0)Δt))n

 Mean-square field:

<B2(nΔt)>1/2=B(0)exp(γ0nΔt)(1-p+pexp(2(γ1-γ0)Δt))n/2



Estimeates for velocities of different 
momentums

 Typical realization:
λ0=0.66 -5p

 Mean field:
λ1=0.66-5p+12.5p(1-p)Δt

 Mean-square field:
λ2= 0.66-5p+25p(1-p)Δt 

 Higher momentums grow faster than lower 
ones – intermittency effect.



Critical value (theoretical 
estimates)

 Assuming λ0=0, we will obtain pcr=0.13.
 λ0>0 if p>0.13 (the field grows).
 λ0<0 if p>0.13 (the field decays).



Numerical results (p=0.1)



Various probabilities



Growth rates
Numerical values Theoretical estimates

p λ0 λ1 λ2 λ0 λ1 λ2

0 0.671 0.680 0.681 0.662 0.662 0.662

0.1 0.182 0.180 0.181 0.162 0.174 0.185

0.2 -0.366 -0.300 -0.280 -0.338 -0.318 -0.298

0.5 -1.86 -1.79 -1.76 -1.84 -1.81 -1.78



Critical value (numerical)

 If p<0.16, the field grows.
 If p>0.16, it decays.
 The critical value (pcr=0.16) is higher than for 

rough estimates.



Star formation and our model

 The probability p can be associated with the 
fraction κ of the HII regions in the galaxy. For 
rough approximation κ≈p. 

 If we study the star formation, it can be 
shown (e.g. Mikhailov, 2014), that

κ≈12ΣSFR
(star formation density measured in M⊙/yr kpc2)



Growth rates – in dimensional 
form

Numerical values Theoretical estimates

ΣSFR, M�/yr kpc2 λ0, Gyr-1 λ1, Gyr-1 λ2, Gyr-1 λ0, Gyr-1 λ1, Gyr-1 λ2, Gyr-1

0 0.906 0.919 0.920 0.895 0.895 0.895

0.012 0.246 0.243 0.245 0.219 0.235 0.250

0.024 -0.495 -0.405 -0.378 -0.457 -0.429 -0.402

0.06 -2.51 -2.42 -2.38 -2.49 -2.46 -2.41



Critical value for star formation

 For star formation we can obtain 
Σcr≈0.013M⊙/yr kpc2.

 If ΣSFR>Σcr, the field decays.
 This value is few times more than in the Milky 

Way.



Summary
 The dynamo model with random diffusivity coefficients 

has been studied. It can be useful to describe the 
influence of active processes on the magnetic field. 

 According to this approach, intensive active processes 
make the field decay. As for the star formation rate, the 
field decays if ΣSFR>Σcr ≈0.013M⊙/yr kpc2.

 It is quite similar to the results obtained in deterministic 
dynamo model with star formation (Mikhailov et al., 
2012; Mikhailov, 2014).

 It is interesting to study a model where both alpha-effect 
coefficient and the diffusion coefficient are random. It 
can make our results more precise.
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