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Main purpose of the talk

@ Show recent approach of Signal Processing on Graphs/Networks
@ Using Spectral Graph theory
@ Spectral Graph Wavelets = Multiscale Concepts

@ Importance of Multiscale approach in analysis of Astronomical
Images
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Methods of Signal Processing for Analysis of Big Data

The main points:

@ Representation and processing of massive data sets with irregular
structure in the areas

@ Same methods in: Engineering, Astronomy, Social Networks,
Biomolecular research (biochemical and genetics), Commerce
(consumer behaviour studies), Security

@ Our approach: Discrete Signal Processing (DSP) on
Networks/Graphs using Spectral theory and Wavelets

Challenges: Large-scale filtering and frequency analysis

The new notions which generalize those of the classical DSP: Graph
signals, Graph filters, Graph Fourier transform, Graph frequency,
Spectrum ordering

Ognyan Kounchev (Institute of Mathematics Network Methods for Big Data: Applications



3 examples of Signals on graphs

Top: Samples of the signal cos (27tn/6): edges show causality of time;
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Examples above:
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Sensor network — edges show closeness of locations of the sensors;
WWW: nodes = websites with website features, edges = hyperlinks
Social Network: nodes = individuals, edges = connection and
strength

Astronomical Images and their Network approximations

Network Approximations have nodes which are galaxies, stars,
clusters; nodes are intersection of lines along edges; closer Nodes
represent similar features within the data

An Examplary OBJECTIVE of OUR WORK: Find a method for
high speed automatic classification of galaxies

previously done by thousands of volunteers

Application to: images of distant clusters of galaxies that
contain several different types of galaxies

General approach of Machine Learning: This is the art of "teaching”
the algorithms the experience of people accumulated for a long time.
Applications of the same methods e.g. in medicine, for helping to
spot tumours. or in security. to find suspicious items in airnort scans.
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Example - LinkedIn
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Biostatistics - example graph




Influencer Network-graph

FORMCEPT SNA as a Service
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General principles of SP on graphs

@ DSP is applied to data sets in which the elements are related by
dependency, similarity, physical porximity, etc.
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General principles of SP on graphs

@ DSP is applied to data sets in which the elements are related by
dependency, similarity, physical porximity, etc.

o data elements v; € G = nodes of the graph/network, for
j=12..,N

e A= (aj) is the weighted adjacency matrix where aj; shows the
similarity /closeness between nodes v; and v;

e Signal S = (sj)jN:1 is a sequence of numbers which are valued on the
nodes v;

@ The "neighbouring” nodes for the node v; is the set

N;

Ognyan Kounchev (Institute of Mathematics Network Methods for Big Data: Applications



Multiscale structure Analysis of Network Signals

© Graph shift - generalizes the usual DSP time delay; taking average
over the Neighbours

Sp = 2 An,msm
meN,

@ Graph Fourier transform needs the Graph Laplace operator (we
assume undirected graph): for a signal f on the graph we define

Lf, = Z am,n (fm — fn)

neN,

@ L is a real symmetric matrix: we denote the N (orthonormal)
eigenvectors and eigenvalues of L by

X0 = (7, 2p) €RY
A <Ay <o < Ay

. i 2 . .
They are the analogue to e, since —%e’kt = k2elkt
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[FIG2] (a)-(c) Three graph Laplacian eigenvectors of a random sensor network graph. The signals’ component values are

represented by the blue (positive) and black (negative) bars coming out of the vertices. Note that uso contains many more zero

crossings than the constant eigenvector uo and the smooth Fiedler vector us.
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[FIG3] The number of zero crossings, | Z¢(uJ |in (a) and| Z¢(a4) | in (b), of the unnormalized and normalized graph Laplacian

eigenvectors for the random sensor network graph of Figure 2, respectively (the latter of which is defined in the section “Other Graph
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Fourier and Wavelet Analysis on Graphs

@ Hence, we have Fourier Analysis
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Zg n) nXp>
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Fourier and Wavelet Analysis on Graphs

@ Hence, we have Fourier Analysis
fn =Y Foxcn)
m nXm

@ One may define Wavelet Analysis by using appropriate filter function
g, as follows:

N—-1 . (n)
Wr (p) = Y g (An) faxp
n=0

o We may define the scale t by putting

N-1

We (pit) = Y g (tAn) fuxs”
n=0

@ The role of t - the scale of the localized at node a wavelet ¥, ,
where (a € G ).
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Examples of localizations — Swiss roll




-0.01 [] 001 -0.02 0 0.02

-0.16 [] 015 -04 [] 04 -0.2 ] 02

(d) (e) ()

Figure 4: Spectral graph wavelets on Minnesota road graph, with K = 100,
J = 4 scales. (a) vertex at which wavelets are centered (b) scaling function
(e)-(f) wavelets, scales 1-4.
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Figure 5: Spectral graph wavelets on cerebral cortex, with K = 50, .J = 4 scales.
(a) ROL at which wavelets are centered (b) scaling function (c)-(f) wavelets,
scales 1-4.
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Figure 6: Spectral graph wavelets on lake Geneva domain, (spatial map (a),
contour plot (¢)); compared with truncated wavelets from graph corresponding
to complete mesh (spatial map (b), contour plot (d)). Note that the graph
wavelets adapt to the geometry of the domain.
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Main Objective: Clusterization (Community Detection on

graphs)

Multiscale community structure in a graph
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Continued

Examples of wavelets
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Comparison with other methods for Community Detection

Classical community detection algorithm do not have this
“scale-vision“ of a graph. Modularity optimisation finds:
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Possible Applications outside and in Astronomy

@ Remote Sensing Network for Time-Sensitive Detection of Fine Scale
Damage to Transportation Infrastructure
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@ Development of a Real Time Remote Sensing Network to Monitor
Small Fluctuations in Urban Air Quality
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Possible Applications outside and in Astronomy

@ Remote Sensing Network for Time-Sensitive Detection of Fine Scale
Damage to Transportation Infrastructure

@ Expoiting existing ground-based remote sensing Networks to improve
High-resolution weather forecasts.

@ Neural Network Applications in High-Resolution Atmospheric Remote
Sensing

@ Development of a Real Time Remote Sensing Network to Monitor
Small Fluctuations in Urban Air Quality

@ Network clustering by graph coloring: An application to astronomical
images
@ Astronomical image segmentation by Networks and wavelets

@ Machine learning method to analyse galaxy images

Ognyan Kounchev (Institute of Mathematics Network Methods for Big Data: Applications



Machine learning: to "teach” a machine to analyse galaxy images

@ Picture 1: Hubble Space Telescope image of the cluster of galaxies
MACS0416.1-2403, one of the Hubble ‘Frontier Fields'. Bright yellow
‘elliptical’ galaxies can be seen, surrounded by numerous blue spiral
and amorphous (star-forming) galaxies

@ Picture 2: Visualisation of the (neural) network representing the
‘brain” of the machine learning algorithm. The intersections of lines
are called nodes, and these represent a map of the input data. Nodes
that are closer to each other represent similarity

© Picture 3: A zoom-in of part of the network described above.
Credit: J. Geach / A. Hocking

@ Picture 4: Image showing the MACS0416.1-2403 cluster, highlighting
parts of the image that the algorithm has identified as ‘star-forming’
galaxies. Credit: NASA / ESA / J. Geach / A. Hocking

© Picture 5: Image showing the MACS0416.1-2403 cluster, highlighting
parts of the image that the algorithm has identified as ‘elliptical’
galaxies. Credit: NASA / ESA / J. Geach / A Hockin
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Continued - Network approximation
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Cont'd - zoomed part
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Cont'd - "star forming” galaxies




Cont'd — "elliptical” galaxies
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Deep Learning and Wavelets approach
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