On the broadenings of spectral lines emitted in surface wave discharges

M. Christova, L. Christov and M. S. Dimitrijević

Surface wave sustained discharge

 $n \Leftrightarrow \langle E^2 \rangle$

Filamentation of the discharge

Djermanova N, Grozev D, Kirov K, Makasheva K, Shivarova A and Tsvetkov Ts 1999 *J. Appl. Phys.* **86** 737-745

Diagnostics methods for plasma parameters

- Probe diagnostics
- Microwave and Radiophysics methods
- Optical spectroscopy methods
- •Without any perturbation of both plasma and wave
- •Profile, broadening and shift of the emitted spectral lines information about the plasma parameters and interactions emitter-perturbers (charged and neutral particles).
- •The methods based on the broadening of the lines emitted by the gas under investigation are seldom used for diagnostics of SWDs.

Spectroscopy diagnostics – broadenings

Aim: Experimental and theoretical investigation of broadening of spectral lines, suitable for electron density and gas temperature diagnostics of SWDs in the pressure range between 1-200 Torr and 1 atm.

Goals:

- •Nonstationary regimes of SWDs Experiment
- •Stationary regime under atmospheric pressure Experiment
- •Modelling the pressure broadenings of Ar I lines:
 - a) Calculations of Stark broadening parameters

b) Calculations of neutral broadening using different potentials of interaction.

Nonstationary regimes of SWDs - Experiment

6

Experimental results: Gas temperature and electron density

Christova M, Gagov V and Koleva I, "Analysis of the profiles of the Argon 696,5 nm spectral line excited in nonstationary waveguided discharges" *Spectrochemica Acta B* (2000) **55** 815 - 822

λ (nm)	Transition	$E_{\rm u}$ (cm ⁻¹)	$E_{\rm l}({\rm cm}^{-1})$	n*
737.2	3p ⁵ 4d-3p ⁵ 4p	119024	105463	3.68
641.6	3p ⁵ 6s-3p ⁵ 4p	119683	104102	3.84
591.2	3p ⁵ 4d'-3p ⁵ 4p	121012	104102	3.81
560.7	3p ⁵ 5d-3p ⁵ 4p	121933	104102	4.60
603.2	3p ⁵ 5d-3p ⁵ 4p	122036	105463	4.65
518.8	3p ⁵ 5d'-3p ⁵ 4p	123373	104102	4.61
549.6	3p ⁵ 6d-3p ⁵ 4p	123653	105463	5.63
522.1	3p ⁵ 7d-3p ⁵ 4p	124610	105463	6.62

Christova M, Castaños-Martinez E, Calzada M D, Kabouzi Y, Luque J M and Moisan M 2004 *Applied Spectroscopy* **58** №9 1032 – 1037 **Theoretical results for Stark broadening** parameters of argon lines

⇒ To obtain Stark broadening parameters

522.1, 549.6, 518.8, 560.7, 603.2 и 696.5 nm visible optical Ar I линии

Semi-classical theory of Sahal-Bréchot within impact approximation

Investigating the influence of:

1) Spin-orbital interaction

2) Coupling scheme

3) Oscillator strengths

Sahal-Bréshot theory

$$W = 2n_e \int_{0}^{\infty} vf(v) dv \left[\sum_{i' \neq i} \sigma_{ii'}(v) + \sum_{f' \neq f} \sigma_{ff'}(v) + \sigma_{el} \right]$$
$$d = n_e \int_{0}^{\infty} vf(v) dv \int_{\rho_3}^{\rho_d} 2\pi \rho d\rho \sin 2\varphi_p$$

Input data

$$n_{e}, T, \lambda, m_{i}, m_{p}$$

 $E_{ion}, B, Z_{p}, E_{i}, E_{f},$
 $l_{i}, l_{f}, E_{i}, E_{f}, l_{i}, l_{f}, f_{if}$

$$W = W_{in} + W_{el}$$
$$W_{in} = W_{in}^{str} + W_{in}^{w}$$
$$W_{el} = W_{el}^{str} + W_{el}^{w}$$

Using cataloge Topbase $LS(E, f_{ij})$ Kurucz j- $L(E, f_{ij})$ NIST j-L(E) f_{ij} Beits and Damgaard

\downarrow

Output data $W_{e}, d_{e}, W_{i}, d_{i}, W_{p}, d_{p}$ $W_{str}, d_{str}, W_{el}, W_{in}, d_{in}$ W_{q}, d_{q}, A

Temperature dependence of Stark broadening

GD 2004, **K9**, Sept. 5 – 10, Toulouse, France.

Temperature dependence of Stark broadening

Ar I 696.5 nm

Comparison with experimental and theoretical results by other authors

Ar I 549.6 nm

Dimitrijević M S, Christova M and Sahal-Bréchot S, "Stark broadening of visible Ar I spectral lines", *Phys. Scripta* (2007) **75** 809-819

Griem 1974 Sahal-Bréchot 9 5 9 quasistatic ions •Schulz 1968; ▲ Bues 1969; ⊠Ranson 1974

Comparison with experimental and theoretical results by other authors

Ar I 603.2 nm

Griem 1974 Sahal-Bréchot **9⑤9** quasistatic ions ●Schulz 1968; ▲ Bues 1969; ⊠Ranson 1974; ◆ Kasakov 1981

Criteria for impact approximation C_1 – transitional range

Ar I 696.5 nm

Theoretical results for broadening of argon lines by neutral atoms

Potentials of interactions: Van der Waals, Lennard-Jones and Kaulakys

Axial variation of n_e in capillary discharge at p = 1 atm by the pressure broadenings of Ar I lines, using the theoretical results

Potentials of emitter-atom interactions in ground state

- Van der Waals $V(R) = -C_6 R^{-6}$
- Lennard-Jones
- Kaulakys

$$V(R) = C_{12}R^{-12} - C_6R^{-6}$$

$$V(\vec{R}, \vec{r}) = V_c(\vec{R}) + V_{ce}(\vec{R}, \vec{r}) + V_e(\vec{r} - \vec{R}) \qquad |\vec{R} - \vec{r}| > r_0$$

$$V_e(\vec{r} - \vec{R}) = 2\pi L\delta(\vec{r} - \vec{R})$$

$$V(R) \Rightarrow \sigma(\mathbf{v}) \Rightarrow \gamma = \beta n$$

Ar I 522.1 nm

Ar I 549.6 nm

Ar I 522.1 nm

Ar I 549.6 nm

Influence of Maxwellian averaging of the broadening cross section on the *n**-dependence of the broadening coefficient

Christova M Journal of Physics: Conference Series 2007 63 012012

Pressure and gas temperature dependence of the broadening of Ar I 696.5 nm

Axial variation of the electron density

λnm	g 10 ⁻¹⁴ Åcm ³	grad _z n _e 10 ¹³ cm ⁻⁴
522.1	0.07	9.7
549.6	0.04	8.7
603.2	0.02	6.5

1.1

Hvala