Poster

VARIABILITY SELECTED LOW LUMINOSITY ACTIVE GALACTIC NUCLEI FROM ASAS-SN SURVEY

Heechan Yuk¹, Xinyu Dai¹, T. Jayasinghe², Hora D. Mishra¹, Hai Fu³, Christopher S. Kochanek^{2,4}, Benjamin J. Shappee⁵ and K. Z. Stanek^{2,4}

¹Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019, USA

²Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA

³Department of Physics & Astronomy, University of Iowa, Iowa City, IA 52242, USA

⁴Center for Cosmology and AstroParticle Physics, The Ohio State University,

191 W. Woodruff Ave., Columbus, OH 43210, USA

⁵Institute for Astronomy, University of Hawai`i at Manoa, 2680 Woodlawn Dr., Honolulu, HI 96822, USA

E-mail: hyuk@ou.edu, xdai@ou.edu

Variability is one of key features to select active galactic nuclei (AGN). We present an analysis of All-Sky Automated Survey for Supernovae light curves of 1218 galaxies from the Sloan Digital Sky Survey spectroscopic sample with the g magnitude brighter than g < 14. 35 objects are identified with AGN-like structure function (SF), which is about 3% of the sample. The majority of the variability selected AGN are low luminosity AGN (LLAGN) with the Eddington ratios ranging from 10^{-4} to 10^{-2} . We estimate the fraction of LLAGN in the population of galaxies as 3% down to an Eddington limit of 10^{-4} . Traditional BPT selection is incomplete, which classifies $30 \sim 50\%$ of the LLAGN as starburst galaxies instead. On average, the fractional flux variability of a LLAGN is $\sim 10^{-3}$, and the power law index of SF is 1.88 ± 0.05 . This slope is steeper than the expected value from the damped random walk model.