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Introduction

Lineshapes of atomic radiative transitions broadened by
plasma is a complex problem.

No general analytic solution exists.

Several models have been suggested to treat it.

Lyman-α is the simplest transition; but paradoxically,
agreement between different models is worse for this line.

Clearly, there is something about Lyman-α. More generally, lines
with the central component (Balmer-α etc). What?

SLSP 1&2 analysis: Ion dynamics (again)! [Ferri et al., 2014]
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When simple is more difficult...

A subset of the 1st Spectral Line Shapes in Plasmas (SLSP)
workshop results [Stambulchik, 2013]; SCSLSA-2013:

Subcases (27 for each line): 2 orders of magnitude Ne & T; e, i, e+i
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= different codes

NB. Lyman-α — 3 Stark components; Lyman-δ — 8 components.
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A short historical background

Back to 1970’s [Wiese et al., 1975]:

The ∝ 1/
√
µ scaling was later confirmed by computer simulations

[Gigosos and Cardeñoso, 1987].

What about the Ne dependence? Dependence on ion charge etc?

Finally, do we today really understand what ion dynamics is?
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Models and simulations

There exist several models to deal with the plasma line
broadening [Gigosos, 2014].

Computer simulations (CS) is a reliable and the closest to ab
initio approach available today for hydrogenlike lines.
However, the CS approach has two drawbacks:

(Practical): it is slow, i.e., unrealistic to use inlined into a
higher-level code, such as collisional-radiative/hydromotion/...
(Cognitive): by itself, does not provide insight into why nature
works that way or another.

Thus, although we are capable of calculating Lyman-α shapes
accurately, a physically sound model appears to be lacking.

Here, we claim to have found it [Stambulchik and Demura, 2015].
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Computer simulations :: Scheme

(Particle Field Generator)

PFG

SS
(Schrödinger Solver)

FFT
(Fast Fourier Transform)

N-body simulation

Line-shape calculation

Û(t) → <D→(t)>

+ External fields

Several implementations since [Stamm and Voslamber, 1979].
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When simple is more difficult... or not

A subset of the 1st Spectral Line Shapes in Plasmas (SLSP)
workshop results [Stambulchik, 2013]; SCSLSA-2013:

Subcases (27 for each line): 2 orders of magnitude Ne & T; e, i, e+i
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Computer simulation (CS) results are nearly identical.
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Dimensionality analysis

Consider a one-component plasma; temperature T , density Np of
particles with charge Zp and reduced mass M∗p . H-like radiator.

For a transition between states i and j, there are 3 entities with the
dimension of energy (or frequency; ~ = e = me = 1):

the (quasi)static Stark effect,

wst ≡ ∆Ei −∆Ej ∼ (di − dj)F0 ∝
|Zp |

Z
N2/3

p ;

a typical frequency of the plasma microfields,

wdyn ≡ Ḟ(t)/F(t) ∼ v/r ∼ (T/M∗p)1/2N1/3
p ;

the unperturbed transition energy E0
ij .

If wst,wdyn � E0
ij ⇒ E0

ij can be ignored. Thus, only wst and wdyn.
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Dimensionality analysis (cont.)

From the dimensionality considerations, the line width w (say,
FWHM) can be written as

w =
∑

k

Ck wpk
st w1−pk

dyn ≡
∑

k

Ck wk ,

where Ck and pk are real numbers.

Then, wk is

wk ∝

(
|Zp |

Z

)pk
(

T
M∗p

)(1−pk )/2

N(1+pk )/3
p .

Can you recognize some wk ’s?

pk = 1: wk ∝
|Zp |

Z N2/3
p — quasistatic (ignoring Debye etc);

pk = 2: wk ∝
Z2

p

Z2 Np/
√

T — impact (up to log terms).

What if wst � wdyn or wst ≡ 0 (the central component of Lyman-α)?
Then only the term with pk = 0 remains;⇒ w = C0wdyn.
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Dimensionality analysis (cont.)

Again:
w = C0wdyn ∼ (T/M∗p)1/2N1/3

p

This expression “knows” nothing about the radiator! One is
tempted to put C0 = 0.

Yet this is the only term with ∼ (T/M∗p)1/2
∼ 1/

√
µ!

We call this broadening regime “rotational”.
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“Rotational” vs “vibrational” broadening

Let us define “rotational” and “vibrational” microfield
pseudocomponents as

~Frot(t) = F0

~F(t)
F(t)

and
~Fvib(t) = ~nzF(t),

respectively.



“Rotational” vs “vibrational” broadening :: µ sensitivity
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H Ly-α in ideal OCP with n = 1017 cm-3, T = 1 eV, µ = s2µ0

“Rotational” field: affects both the central and lateral components.
“Vibrational” field: slightly influences the lateral components; the
central one remains a δ-function [Demura and Stambulchik, 2014].
He II: [Calisti et al., 2014].
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Simulation setup

Consider H Lyman-α broadened by an ideal (no interactions) OCP.

Assume the non-quenching approximation (no LS coupling, no
mixing of states with ∆n , 0), and only dipole interactions.

Our “reference” plasma conditions are T0 = 1 eV, N0
p = 1017 cm−3,

Z0
p = 1, and M∗p = mp/2 (mp is the proton mass). 8,000 particles

were included in the simulations.



Lyman-α in an ideal OCP :: Varying Np
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By varying Np , broadening changes from the impact to rotational
regime. Quasistatic-like dependence is just an intermediate case!



Lyman-α in an ideal OCP :: Varying Np

1014 1015 1016 1017 1018 1019

Np (cm-3)

0.1

1

10

FW
H

M
 (c

m
-1

)
CS
∝ Np          (impact)

By varying Np , broadening changes from the impact to rotational
regime. Quasistatic-like dependence is just an intermediate case!



Lyman-α in an ideal OCP :: Varying Np

1014 1015 1016 1017 1018 1019

Np (cm-3)

0.1

1

10

FW
H

M
 (c

m
-1

)
CS
∝ Np          (impact)

∝ Np
2/3 (quasistatic)

By varying Np , broadening changes from the impact to rotational
regime. Quasistatic-like dependence is just an intermediate case!



Lyman-α in an ideal OCP :: Varying Np

1014 1015 1016 1017 1018 1019

Np (cm-3)

0.1

1

10

FW
H

M
 (c

m
-1

)
CS
∝ Np          (impact)

∝ Np
2/3 (quasistatic)

∝ Np
1/3  (rotational)

By varying Np , broadening changes from the impact to rotational
regime. Quasistatic-like dependence is just an intermediate case!



Lyman-α in an ideal OCP :: Varying Np

1014 1015 1016 1017 1018 1019

Np (cm-3)

0.1

1

10

FW
H

M
 (c

m
-1

)
CS
∝ Np          (impact)

∝ Np
2/3 (quasistatic)

∝ Np
1/3  (rotational)

By varying Np , broadening changes from the impact to rotational
regime. Quasistatic-like dependence is just an intermediate case!



Lyman-α in an ideal OCP :: Varying T
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Again, broadening changes from the impact to rotational regime,
with the quasistatic-like dependence as an intermediate case.
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increase line broadening after
some point!

[Demura et al., 1977]:

The broadening of the central component is affected neither by the
field magnitude (F0) nor by the atomic properties (C)!
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A unified (impact + rotational) model

Let’s write an empiric expression covering impact and rotational
regimes asymptotically:

w−1 = w−1
imp + w−1

rot ,

where wimp and wrot are the Stark broadenings in the impact and
rotational limits.

Thus,

w−1 = α

(
Z
Zp

)2 (
T

M∗p

)1/2

N−1
p + β−1

(M∗p
T

)1/2

N−1/3
p ,

where α and β are some universal constants.
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Lyman-α in an ideal OCP :: Varying Np
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Model fit

By varying Np , broadening changes from the impact to rotational
regime. Quasistatic-like dependence is just an intermediate case!



Lyman-α in an ideal OCP :: Varying T
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Again, broadening changes from the impact to rotational regime,
with the quasistatic-like dependence as an intermediate case.



Lyman-α in an ideal OCP :: Varying Zp

0.1 1 10
Zp

0.1

1

10
FW

H
M

 (c
m

-1
)

CS
∝ Z2      (impact)
∝ Z  (quasistatic)
const (rotational)
Model fit

Again, broadening changes from the impact to rotational regime,
with the quasistatic-like dependence as an intermediate case.



Outline of the talk

1 Introduction

2 Dimensionality games

3 Microfield directionality

4 Lyman-α in ideal one-component plasma

5 Lyman-α in ideal two-component plasma

6 Non-ideal plasmas

7 Conclusions



Two-component plasmas

We have only considered a one-component proton plasma.

However, the model is also applicable to other types of ions as well
as to electrons.

Assuming additive contributions of ions and electrons:

wtot = wi + we .



Lyman-α in an ideal TCP :: Varying T
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Over four orders of magnitude of T , FWHM changes only by
∼ 50%! (Coincidentally, quasistatic-like dependence.)



Lyman-α in an ideal TCP :: Varying Np
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Over six orders of magnitude of N, FWHM scales close to ∼ N2/3
p .

(Coincidentally, quasistatic-like dependence.)
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Ideal vs. non-ideal TCP :: Varying T
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Only minor corrections due to Debye screening (“G&C” = tables for
real plasmas, [Gigosos and Cardeñoso, 1996]).
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Conclusions

Spectral lines with a central, unshifted Stark component are
broadened by plasma in a unique manner:

The quasistatic broadening regime is never realized for the
lineshape core.

Instead, the broadening changes from the impact regime to
another, also dynamical in nature, “rotational” one.

In the latter, the line width only depends on the typical
frequency of the plasma microfields [i.e., ∝ N1/3

p (T/M∗p)1/2] and
is independent of the microfield magnitudes and the atomic
properties of the transition.

A simple analytic expression for the linewidth is suggested,
applicable to broadening of Lyman-α in H or H-like ions due to
electrons and ions alike—separately or together, in a broad
range of parameters.
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Thank you!
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Extra material



Lyman-α in an ideal OCP :: Varying Zp
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As the lateral components are progressively shifted and
broadened, the FWHM becomes mainly determined by the width of
the central component.



Other lines with central component :: Varying Zp
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