# High temperature optical spectra of diatomic molecules: quantum-mechanical, semiquantum and semiclassical approach

Robert M. Beuc, Berislav Horvatić and Mladen Movre



**Zagreb, Croatia** 



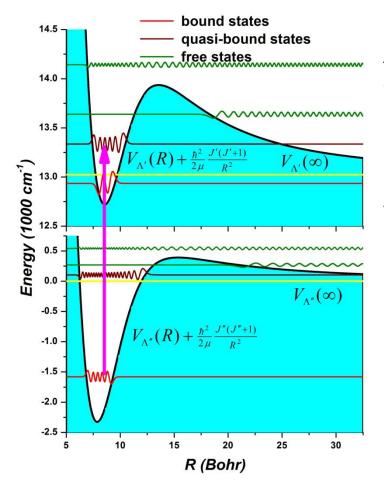
# Reduced absorption coefficient of a dimer

According to the Beer-Lambert law, in terms of binary collisions, the transmittance  $\tau(\nu,T)$  of a uniform atomic gas layer with a number density of atoms  $\boldsymbol{n}$  and length  $\boldsymbol{L}$  is  $\tau(\nu,T) = \exp\left(-n^2k(\nu,T)L\right)$  where  $k(\nu,T)$  is the reduced absorption coefficient of atomic dimer,  $\nu$  is frequency of absorbed photon and T is temperature.

# Reduced absorption coefficient of a dimer

According to the Beer-Lambert law, in terms of binary collisions, the transmittance  $\tau(\nu,T)$  of a uniform atomic gas layer with a number density of atoms  $\boldsymbol{n}$  and length  $\boldsymbol{L}$  is  $\tau(\nu,T) = \exp\left(-n^2k(\nu,T)L\right)$  where  $k(\nu,T)$  is the reduced absorption coefficient of atomic dimer,  $\nu$  is frequency of absorbed

photon and T is temperature.



$$k(\nu,T) = \sum_{i,j} k_{\Lambda''_i,\Lambda'_j}(\nu,T)$$

 $\Lambda''$  and  $\Lambda'$  label the lower and the upper electronic state.  $V_{\Lambda}(R)$  is the *interaction* potential

Bound (quasi-bound) states: energy  $E_{v,J,\Lambda}$ , unity-normalized wave function  $\Phi_{v,J,\Lambda}$ , v vibrational and J rotational quantum number

Free states: asymptotic kinetic energy  $\varepsilon$ , energy-normalized wave functions  $\Psi_{\varepsilon,J,\Lambda}$ 

$$\left(-\frac{\hbar^2}{2\mu}\frac{d^2}{dR^2} + V_{\Lambda}(R) + \frac{\hbar^2}{2\mu}\frac{J(J+1)-\Lambda^2}{R^2}\right)\Phi(R) = E\Phi(R)$$

$$k_{\Lambda'',\Lambda'}(v,T) \propto \sum transition \begin{bmatrix} v''(\varepsilon'') \rightarrow v'(\varepsilon') \\ J'' \rightarrow J' = J'', J'' \pm 1 \end{bmatrix}$$

$$k_{\Lambda'',\Lambda'}(\nu,T) = k_{bb}(\nu,T) + k_{bf}(\nu,T) + k_{fb}(\nu,T) + k_{ff}(\nu,T)$$

$$k_{\Lambda'',\Lambda'}(\nu,T) = k_{bb}(\nu,T) + k_{bf}(\nu,T) + k_{fb}(\nu,T) + k_{ff}(\nu,T)$$

bound (quasi-bound) - bound (quasi-bound) transitions:  $h\nu_{tr} = E_{\nu',J,\Lambda'} - E_{\nu'',J,\Lambda''}$ 

$$k_{bb}(v,T) = w_{\Lambda'',\Lambda'} \frac{8\pi^3 v}{3hc} \left( \frac{h^2}{2\pi\mu k_B T} \right)^{3/2} \sum_{J} (2J+1) \sum_{v'',v'} \left| \left\langle \Phi_{v''J\Lambda''} \middle| D(R) \middle| \Phi_{v'J\Lambda'} \right\rangle \right|^2 \exp(-\frac{E_{v''J\Lambda''}}{k_B T}) g(hv - hv_{tr})$$

$$k_{\Lambda'',\Lambda'}(v,T) = k_{bb}(v,T) + k_{bf}(v,T) + k_{fb}(v,T) + k_{ff}(v,T)$$

bound (quasi-bound) - bound (quasi-bound) transitions:  $hv_{tr} = E_{v',J,\Lambda'} - E_{v'',J,\Lambda''}$ 

$$k_{bb}(v,T) = w_{\Lambda'',\Lambda'} \frac{8\pi^{3}v}{3hc} \left(\frac{h^{2}}{2\pi\mu k_{B}T}\right)^{3/2} \sum_{J} (2J+1) \sum_{v'',v'} \left| \Phi_{v''J\Lambda''} \right| D(R) \left| \Phi_{v'J\Lambda'} \right|^{2} \exp(-\frac{E_{v''J\Lambda''}}{k_{B}T}) g(hv - hv_{tr})$$

bound (quasi-bound) – free transition:  $\varepsilon' = E_{v'',J,\Lambda''} + h\nu$ 

$$k_{bf}(\nu,T) = w_{\Lambda'',\Lambda'} \frac{8\pi^{3}\nu}{3hc} \left(\frac{h^{2}}{2\pi\mu k_{B}T}\right)^{3/2} \sum_{J} (2J+1) \sum_{\nu''} \left| \left\langle \Phi_{\nu''J\Lambda''} \middle| D(R) \middle| \Psi_{\varepsilon'J\Lambda'} \right\rangle \right|^{2} \exp(-\frac{E_{\nu''J\Lambda''}}{k_{B}T})$$

$$k_{\Lambda'',\Lambda'}(\nu,T) = k_{bb}(\nu,T) + k_{bf}(\nu,T) + k_{fb}(\nu,T) + k_{ff}(\nu,T)$$

bound (quasi-bound) - bound (quasi-bound) transitions:  $h\nu_{tr} = E_{\nu',J,\Lambda'} - E_{\nu'',J,\Lambda''}$ 

$$k_{bb}(v,T) = w_{\Lambda'',\Lambda'} \frac{8\pi^3 v}{3hc} \left( \frac{h^2}{2\pi\mu k_B T} \right)^{3/2} \sum_{J} (2J+1) \sum_{v'',v'} \left| \left\langle \Phi_{v''J\Lambda''} \middle| D(R) \middle| \Phi_{v'J\Lambda'} \right\rangle \right|^2 \exp(-\frac{E_{v''J\Lambda''}}{k_B T}) g(hv - hv_{tr})$$

bound (quasi-bound) – free transition:  $\varepsilon' = E_{v'',J,\Lambda''} + h\nu$ 

$$k_{bf}(\nu,T) = w_{\Lambda'',\Lambda'} \frac{8\pi^{3}\nu}{3hc} \left(\frac{h^{2}}{2\pi\mu k_{B}T}\right)^{3/2} \sum_{I} (2J+1) \sum_{\nu''} \left| \left\langle \Phi_{\nu''J\Lambda''} \middle| D(R) \middle| \Psi_{\varepsilon'J\Lambda'} \right\rangle \right|^{2} \exp(-\frac{E_{\nu''J\Lambda''}}{k_{B}T})$$

free - bound (quasi-bound) transitions:  $\varepsilon'' = E_{v',J,\Lambda'} - hv$ 

$$k_{fb}(v,T) = w_{\Lambda'',\Lambda'} \frac{8\pi^3 v}{3hc} \left(\frac{h^2}{2\pi\mu k_B T}\right)^{3/2} \sum_{J} (2J+1) \sum_{v'} \left| \left\langle \Psi_{\varepsilon''J\Lambda''} \middle| D(R) \middle| \Phi_{v'J\Lambda'} \right\rangle \right|^2 \exp(-\frac{\varepsilon''}{k_B T})$$

$$k_{\Lambda'',\Lambda'}(\nu,T) = k_{bb}(\nu,T) + k_{bf}(\nu,T) + k_{fb}(\nu,T) + k_{ff}(\nu,T)$$

bound (quasi-bound) - bound (quasi-bound) transitions:  $h \upsilon_{tr} = E_{\nu',J,\Lambda'} - E_{\nu'',J,\Lambda''}$ 

$$k_{bb}(v,T) = w_{\Lambda'',\Lambda'} \frac{8\pi^3 v}{3hc} \left( \frac{h^2}{2\pi\mu k_B T} \right)^{3/2} \sum_{J} (2J+1) \sum_{v'',v'} \left| \left\langle \Phi_{v''J\Lambda''} \middle| D(R) \middle| \Phi_{v'J\Lambda'} \right\rangle \right|^2 \exp(-\frac{E_{v''J\Lambda''}}{k_B T}) g(hv - hv_{tr})$$

bound (quasi-bound) – free transition:  $\varepsilon' = E_{v'',J,\Lambda''} + h\nu$ 

$$k_{bf}(\nu,T) = w_{\Lambda'',\Lambda'} \frac{8\pi^{3}\nu}{3hc} \left(\frac{h^{2}}{2\pi\mu k_{B}T}\right)^{3/2} \sum_{J} (2J+1) \sum_{\nu''} \left| \left\langle \Phi_{\nu''J\Lambda''} \middle| D(R) \middle| \Psi_{\varepsilon'J\Lambda'} \right\rangle \right|^{2} \exp(-\frac{E_{\nu''J\Lambda''}}{k_{B}T})$$

free - bound (quasi-bound) transitions:  $\varepsilon'' = E_{v',J,\Lambda'} - hv$ 

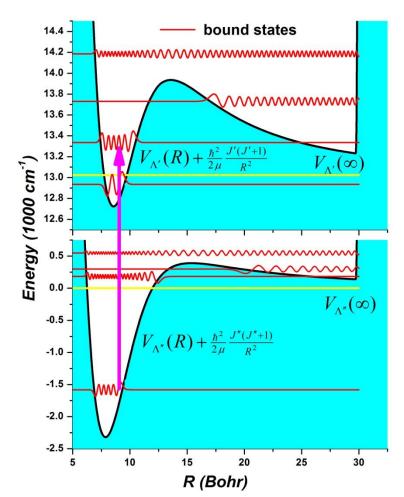
$$k_{fb}(\nu,T) = w_{\Lambda'',\Lambda'} \frac{8\pi^3 \nu}{3hc} \left(\frac{h^2}{2\pi\mu k_B T}\right)^{3/2} \sum_{J} (2J+1) \sum_{\nu'} \left| \left\langle \Psi_{\varepsilon''J\Lambda''} \middle| D(R) \middle| \Phi_{\nu'J\Lambda'} \right\rangle \right|^2 \exp(-\frac{\varepsilon''}{k_B T})$$

free-free transitions:  $\varepsilon' = \varepsilon'' + h\nu$ 

$$k_{ff}(\nu,T) = w_{\Lambda'',\Lambda'} \frac{8\pi^3 \nu}{3hc} \left(\frac{h^2}{2\pi\mu k_B T}\right)^{3/2} \sum_{J} (2J+1) \int_{D_c}^{\infty} d\varepsilon'' \left| \left\langle \Psi_{\varepsilon''J\Lambda''} \middle| D(R) \middle| \Psi_{\varepsilon'J\Lambda'} \right\rangle \right|^2 \exp(-\frac{\varepsilon''}{k_B T})$$

D(R) is electronic transition dipole moment, w is statistical factor dependent on the symmetry of electronic states,  $\mu$  is molecular reduced mass, g line profile.

# **Quantum calculation on the Fourier grid (QC)**



The FGR method can be considered as a special case of Discrete Variable Representation where functions are represented on finite number of grid points  $R_i$  (i=1...N) . We used a grid of uniformly spaced points,  $R_{i+1}$ -  $R_i = \Delta R$ , [D.T. Colbert, W.H. Miller, J. Chem. Phys. 1992]. Energies and wave functions can be determined by diagonalization of Nx/V Hamiltonian matrix H=T+P:

$$T_{i,j} = \frac{\hbar^2}{2\mu\Delta R^2} \begin{cases} \frac{\pi^2}{3} - \frac{1}{2i^2} & i = j\\ (-1)^{i-j} \frac{8ij}{(i^2 - j^2)^2} & i \neq j \end{cases}$$

$$V_{i,j} = \left[V_{\Lambda}(R_i) + \frac{\hbar^2}{2\mu} \frac{J(J+1) - \Lambda^2}{R_i^2}\right] \delta_{i,j}$$

The method yields only a discrete set of continuum energies, but in the range spanned by the grid the corresponding unity-normalized wave functions do represent the states of a true continuum.

Solving the radial Schrödinger equation on the grid one obtains a set of discrete states effectively describing a *confined* molecule, "a molecule in a box", and the entire spectrum is of the bound–bound type.

$$k(v,T) = w \frac{8\pi^{3}v}{3hc} \left( \frac{h^{2}}{2\pi\mu k_{B}T} \right)^{3/2} \sum_{J=0}^{J_{\text{max}}} (2J+1) \sum_{v'',v'} \left| \left\langle \Phi_{v''J\Lambda''} \middle| D(R) \middle| \Phi_{v'J\Lambda'} \right\rangle \right|^{2} \exp(-\frac{E_{v''J\Lambda''}}{k_{B}T}) g(hv - hv_{tr})$$

The matrix elements of the transition dipole moment D(R) are computed as:

$$\left\langle \Phi_{\mathbf{v}'',J,\Lambda''} \middle| D(R) \middle| \Phi_{\mathbf{v}',J,\Lambda'} \right\rangle = \sum_{i=1}^{N_p} \Phi_{\mathbf{v}'',J'',\Lambda''}^*(R_i) D(R_i) \Phi_{\mathbf{v}',J',\Lambda'}(R_i)$$

Solving the relevant radial Schrödinger equation on the grid one obtains a set of discrete energies effectively describing a *confined* molecule, "a molecule in a box", and the entire spectrum is of the bound–bound type.

$$k(v,T) = w \frac{8\pi^{3}v}{3hc} \left( \frac{h^{2}}{2\pi\mu k_{B}T} \right)^{3/2} \sum_{J=0}^{J_{\text{max}}} (2J+1) \sum_{v'',v'} \left| \left\langle \Phi_{v''J\Lambda''} \middle| D(R) \middle| \Phi_{v'J\Lambda'} \right\rangle \right|^{2} \exp(-\frac{E_{v''J\Lambda''}}{k_{B}T}) g(hv - hv_{tr})$$

The matrix elements of the transition dipole moment D(R) are computed as:

$$\left\langle \Phi_{\mathbf{v}'',J,\Lambda''} \middle| D(R) \middle| \Phi_{\mathbf{v}',J,\Lambda'} \right\rangle = \sum_{i=1}^{N_p} \Phi_{\mathbf{v}'',J'',\Lambda''}^*(R_i) D(R_i) \Phi_{\mathbf{v}',J',\Lambda'}(R_i)$$

The parameters of the grid are estimated in the following way:

$$\Delta R = \frac{2\pi\hbar}{n_B\sqrt{2\mu\varepsilon_{kin}}}$$
  $n_B$  is the number of grid points per de Broglie wavelength at maximal expected kinetic energy  $\varepsilon_{kin}$ .

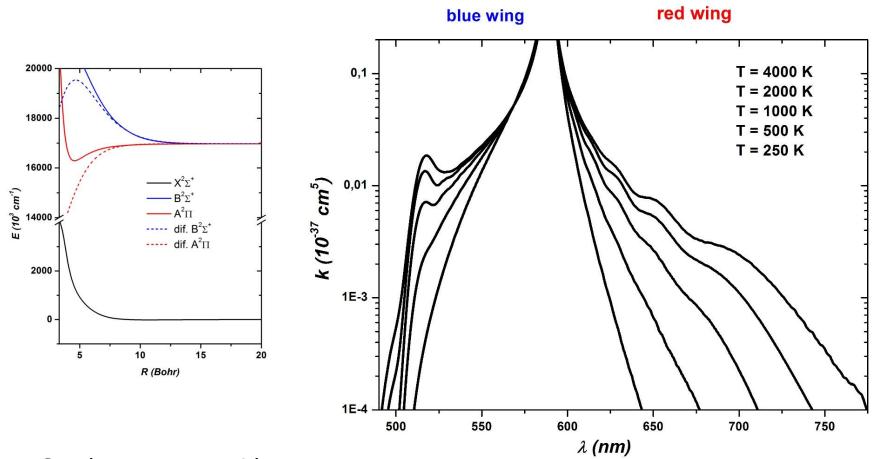
 $R_N$  was chosen in order to get closer to the atomic line centre.

$$J_{\rm max} pprox rac{R_N}{\hbar} \sqrt{2\mu k_B T}$$

Line profile  ${\bf g}$  can be approximated with a normalized rectangular instrumental profile:  $1/\Delta(h\nu)$ 

Fully quantum-mechanical procedure based on the Fourier grid Hamiltonian method, is numerically robust but time consuming.

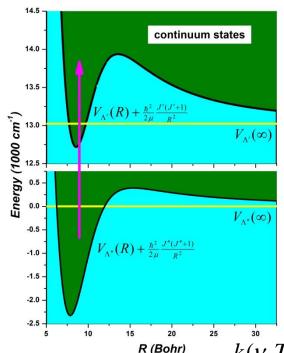
# Sodium resonance 3s-3p line pressure broadened by helium atoms



Good agreement with:

C. Zhu, J. F. Babb and A. Dalgarno, Phys.Rev. A:2006 K Alioua, M Bouledroua, A R Allouche and M Aubert-Frécon, J. Phys. B: 2008

# **Semiclassical approximation (SCA)**



Introducing a continuous variable Y = J(J + 1) and change  $\sum_{J} (2J + 1) \rightarrow \int_{0}^{\infty} dY$ 

Any unity-normalized wave function  $\Phi_{\rm v}$  can be turned into an energy-normalized wave function  $\Psi_{\varepsilon} = \frac{1}{\sqrt{\left|\frac{\partial E_{{\it v}},{\it J},{\it A}}{\partial {\it v}}\right|}}\Phi_{\rm v}$  and the sum can be changed into the integral

$$\sum_{v} \rightarrow \int_{\varepsilon_{\min}}^{\infty} \frac{\partial v}{\partial \varepsilon} d\varepsilon$$

The absorption coefficient can be written as:

$$k(\nu,T) \approx w^{\frac{8\pi^3\nu}{3c}} \left(\frac{h^2}{2\pi\mu k_B T}\right)^{3/2} \int_{\varepsilon''}^{\infty} d\varepsilon'' \exp(-\frac{\varepsilon''}{k_B T}) \int_{0}^{\infty} dY \left| \left\langle \Psi_{\varepsilon'',Y,\Lambda''} \middle| D(R) \middle| \Psi_{\varepsilon''+h\nu,Y,\Lambda'} \right\rangle \right|^2$$

Using energy-normalized wave functions in the WKB form, and the standard approximations, one obtains:

$$\left\langle \Psi_{\varepsilon,Y,\Lambda''} \middle| D(R) \middle| \Psi_{\varepsilon+h\nu,Y,\Lambda'} \right\rangle \approx \frac{\sqrt[4]{2\,\mu}}{\sqrt{2\,\pi\!\hbar}} \sum_{i} \frac{D(R_i)}{\sqrt[4]{\varepsilon-V_{\Lambda''}(R_i,Y)} \sqrt{|\Delta'(R_i)|}} \cos(\varphi(Y,\varepsilon,\nu,R_i) - \sigma_i \frac{\pi}{4})$$

Difference potential:  $\Delta(R) = V_{\Lambda'}(R) - V_{\Lambda''}(R)$   $\Delta'(R) = \frac{d}{dR}\Delta(R)$   $\sigma_i = \text{sgn}[\Delta'(R_i)]$ 

Sumation is over the **Condon points**  $R_i$  satisfying the condition  $\Delta(R_i) = h\nu$ .

Neglecting the rapidly oscillating terms , one obtains **coherent quasi-static** formula of the reduced absorption coefficient :

$$k(\nu,T) = w^{\frac{32\pi^4\nu}{3c}} \left[ \sum_{i=1}^{n} \frac{R_i^2 D(R_i)^2}{|\Delta'(R_i)|} \exp\left(-\frac{V_{\Lambda''}(R_i)}{k_B T}\right) + \sum_{i=1}^{n-1} 2 \frac{R_{ii}^2 D(R_i) D(R_{i+1})}{\sqrt{|\Delta'(R_i)||\Delta'(R_{i+1})|}} \exp\left(-\frac{V_{\Lambda''}(R_{ii})}{k_B T}\right) M_i(\nu,T) \right]$$

Quasi-static formula generally gives a good description of the absorption coefficient, but diverges in difference potential extremes (classical singularity).

Neglecting the rapidly oscillating terms , one obtains **coherent quasi-static** formula of the reduced absorption coefficient :

$$k(\nu,T) = w^{\frac{32\pi^4\nu}{3c}} \left[ \sum_{i=1}^{n} \frac{R_i^2 D(R_i)^2}{|\Delta'(R_i)|} \exp\left(-\frac{V_{\Lambda''}(R_i)}{k_B T}\right) + \sum_{i=1}^{n-1} 2 \frac{R_{ii}^2 D(R_i) D(R_{i+1})}{\sqrt{|\Delta'(R_i)||\Delta'(R_{i+1})|}} \exp\left(-\frac{V_{\Lambda''}(R_{ii})}{k_B T}\right) M_i(\nu,T) \right]$$

Quasi-static formula generally gives a good description of the absorption coefficient, but diverges in difference potential extremes (classical singularity).

This divergence can be removed by mapping of the semi-classical canonic integral phase, into the characteristic form of the elementary "fold" or "cusp" catastrophe.

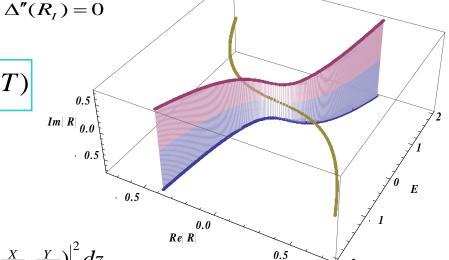
#### **Elementary profile type:**

- 1. Difference potential  $\Delta(R)$  is a monotonic function, one real Condon point  $R_1$
- 2. Difference potential  $\Delta(R)$  is a monotonic function, one inflection point  $R_I$ , one real Condon point  $R_1$  and complex pair of Condon points  $R_{2,3}$
- 3. Difference potential  $\Delta(R)$  has extrema, two Condon points  $R_{1,2}$  If difference potential  $\Delta(R)$  has more extremes, absorption profile can be obtained by combining the elementary profiles.

2. Difference potential  $\Delta(R)$  has one inflection point  $R_{I}$ 

**transitive Pearcey approximation** 

$$k(\nu,T) = w^{\frac{32\pi^4\nu}{3c}} \frac{R_1^2 D(R_1)^2}{|\Delta'(R_1)|} \exp(-\frac{V_{\Lambda'}(R_1)}{k_B^T}) L_c(\nu,T)$$



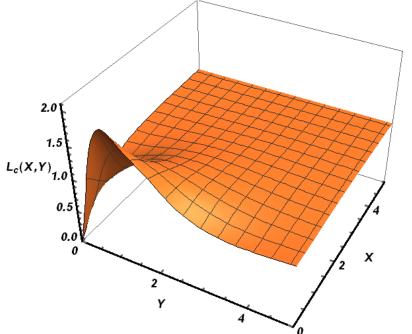
$$L_{c}(X,Y) = \frac{\left(\sqrt{\frac{8}{27}X^{3} + Y^{2}} - Y\right)^{\frac{2}{3}} + \left(\sqrt{\frac{8}{27}X^{3} + Y^{2}} + Y\right)^{\frac{2}{3}} - \frac{2}{3}X}{\pi^{3/2}} \int_{0}^{\infty} \frac{\exp(-z)}{z^{3/4}} \left| P(\frac{X}{z^{1/4}}, \frac{Y}{z^{3/8}}) \right|^{2} dz$$

$$P(x,y) = \int_{-\infty}^{\infty} e^{i(u^4 + xu^2 + yu)} du$$
 Pearcey integral

$$X(T) = \left| \Delta'(R_I) \right| \sqrt{\frac{3}{|\Delta'''(R_I)|}} \left( \frac{2\mu}{\hbar^2 k_B T} \right)^{1/4}$$

$$Y(\nu, T) = \left| \Delta(R_I) - h\nu \right| \sqrt[4]{\frac{3}{|\Delta'''(R_I)|}} \left( \frac{2\mu}{\hbar^2 k_B T} \right)^{3/8}$$

If Y(v,T)>5 or X(T)>5, what is the most common case,  $L_c(v,T)\to 1$ 



#### 3. Difference potential $\Delta(R)$ has extrema in point $R_e$

J.N.L. Connor, R.A. Marcus, J. Chem. Phys. 1971

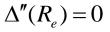
K.M. Sando, J.C. Wormhoudt, *Phys. Rev.* A 1973

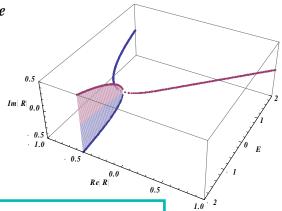
J. Szudy, W.E. Baylis, JQSRT 1975

P.A. Vicharelli, C.B. Collins, SLS1983

R. Beuc and V. Horvatic: J. Phys. B: 1992

R. Beuc, B. Horvatić, M. Movre, J. Phys. B, 2010





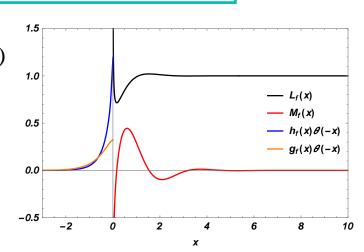
#### uniform Airy approximation

$$k(\nu,T) = w^{\frac{32\pi^{4}\nu}{3c}} \left\{ \left[ \frac{R_{1}^{2}D(R_{1})^{2}}{|\Delta'(R_{1})|} \exp(-\frac{V_{\Lambda''}(R_{1})}{k_{B}T}) + \frac{R_{2}^{2}D(R_{2})^{2}}{|\Delta'(R_{2})|} \exp(-\frac{V_{\Lambda''}(R_{2})}{k_{B}T}) \right] L_{f}(\zeta) + 2 \frac{R_{1}^{2}D(R_{1})D(R_{2})}{\sqrt{|\Delta'(R_{1})||\Delta'(R_{2})|}} \exp(-\frac{V_{\Lambda''}(R_{1})}{k_{B}T}) M_{f}(\zeta) + \left( \frac{8m}{\hbar^{2}k_{B}T} \right)^{\frac{1}{5}} \frac{R_{e}^{2}}{|\Delta''(R_{e})|^{2/3}} e^{-\frac{V(R_{e})}{k_{B}T}} \left[ D(R_{e})^{2}h(\zeta) + \left( \frac{\hbar^{2}k_{B}T}{8m} \right)^{\frac{1}{3}} \frac{4[D'(R_{e})-D(R_{e})\frac{\Delta'''(R_{e})}{6\Delta''(R_{e})}]^{2}}{|\Delta''(R_{e})|^{\frac{2}{3}}} g(\zeta) \right] \right\}$$

$$L_{c}(\zeta) = \sqrt{\zeta}h(\zeta) + \frac{1}{\sqrt{\zeta}}g(\zeta) \qquad M_{c}(\zeta) = \sqrt{\zeta}h(\zeta) - \frac{1}{\sqrt{\zeta}}g(\zeta)$$

$$h(\zeta) = \sqrt{\pi} \int_{0}^{\infty} \frac{Ai\left[-\frac{\zeta}{x^{1/3}}\right]^{2}}{x^{2/3}}e^{-x}dx \qquad g(\zeta) = \sqrt{\pi} \int_{0}^{\infty} \frac{Ai'\left[-\frac{\zeta}{x^{1/3}}\right]^{2}}{x^{1/3}}e^{-x}dx$$

$$\zeta = \zeta(v,T) \approx \left(\frac{4\pi^{2}h\mu}{k_{B}T|\Delta''(R_{e})|}\right)^{\frac{1}{3}}\sigma(v_{e} - v)$$



The standard semiclassical approximation does not give the rovibrational structure of the molecular bands, neglects the effects of turning points, but agrees perfectly with the averaged-out quantum-mechanical spectra. Also, the semiclassical theory can give a physical interpretation of the results obtained by fully quantum-mechanical calculations (W. H. Miller).

# Semiquantum approximation (SQA)

Using standard semiclassical approximations, we calculated integral:

$$\int_{\varepsilon}^{\infty} d\varepsilon \exp(-\frac{\varepsilon}{k_B T}) \Big| \Big\langle \Psi_{\varepsilon,0,\Lambda''} \Big| RD(R) \Big| \Psi_{\varepsilon+h\nu,0,\Lambda'} \Big\rangle \Big|^2$$

By comparison with the semi-classical form of reduced absorption coefficient, we get expression:

$$k(\nu,T) \approx w^{\frac{32\pi^4\nu}{3c} \left(\frac{h^2}{2\pi\mu k_B T}\right)^{\frac{1}{2}} \int_{\varepsilon_{\min}}^{\infty} d\varepsilon'' \exp(-\frac{\varepsilon''}{k_B T}) \left| \left\langle \Psi_{\varepsilon'',0,\Lambda''} \middle| RD(R) \middle| \Psi_{\varepsilon''+h\nu,0,\Lambda'} \right\rangle \right|^2$$

Turning energy-normalized wave functions to unity-normalized wave functions one obtains

$$k(v,T) \approx w^{\frac{32\pi^4 v}{3c}} \left(\frac{h^2}{2\pi\mu k_B T}\right)^{1/2} \int_{0}^{\infty} dv' \int_{0}^{\infty} dv' \exp(-\frac{E_{v',0,\Lambda''}}{k_B T}) \left| \left\langle \Phi_{v',0,\Lambda''} \middle| RD(R) \middle| \Phi_{v',0,\Lambda'} \right\rangle \right|^{2} \delta(hv - hv_{tr})$$

One can approximate the integrals by sums

and obtain a quantum-like ("quasiquantum" or "semiquantum") expression.

$$k(v,T) \approx w^{\frac{32\pi^4 v}{3c} \left(\frac{h^2}{2\pi\mu k_B T}\right)^{1/2} \sum_{v'',v'} \exp(-\frac{E_{v'',\Lambda''}}{k_B T}) \left| \left\langle \Phi_{v'',0,\Lambda''} \middle| RD(R) \middle| \Phi_{v',0,\Lambda'} \right\rangle \right|^2 g(hv - hv_{tr})$$

In order to evaluate this relation, one needs to know the vibrational energies and the corresponding wave functions for J = 0 only.

Semiquantum approximation gives good results if the distance between the vibrational transitions  $h\nu_{tr}=E_{\nu',\Lambda'}-E_{\nu'',\Lambda''}$  is comparable or less than the width of the instrumental profile g.

The semiquantum spectrum was collected in bins of the size  $\Delta h \nu = 10$  cm<sup>-1</sup> and smoothed out with a simple unity-normalized triangular profile having a width of 50 cm<sup>-1</sup>.

and obtain a quantum-like ("quasiquantum" or "semiquantum") expression.

$$k(v,T) \approx w^{\frac{32\pi^4 v}{3c} \left(\frac{h^2}{2\pi\mu k_B T}\right)^{1/2} \sum_{v'',v'} \exp(-\frac{E_{v'',\Lambda''}}{k_B T}) \left| \left\langle \Phi_{v'',0,\Lambda''} \middle| RD(R) \middle| \Phi_{v',0,\Lambda'} \right\rangle \right|^2 g(hv - hv_{tr})$$

In order to evaluate this relation, one needs to know the vibrational energies and the corresponding wave functions for J = 0 only.

Semiquantum approximation gives good results if the distance between the vibrational transitions  $h\nu_{tr}=E_{\nu',\Lambda'}-E_{\nu'',\Lambda''}$  is comparable or less than the width of the instrumental profile g.

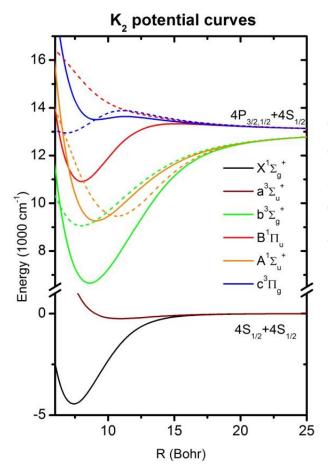
The semiquantum spectrum was collected in bins of the size  $\Delta h \nu = 10$  cm<sup>-1</sup> and smoothed out with a simple unity-normalized triangular profile having a width of 50 cm<sup>-1</sup>.

The semiquantum approximation is in very good agreement with fully quantum calculations, while its computer time consumption can be lower by four orders of magnitude.

A disadvantage of this method is an unsatisfactory description of the discrete structure of molecular bands.

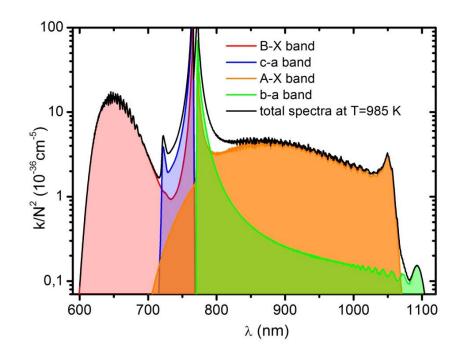
However, even the low-resolution absorption spectroscopy may serve as a valuable tool for checking the accuracy of molecular electronic structure calculations, and for gas temperature and number density diagnostics.

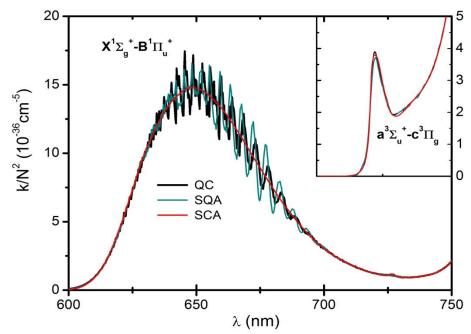
# **Absorption spectra of potassium molecule**



R. Beuc, M. Movre, B. Horvatić, Eur. Phys. J. D, 2014
In the theoretical simulation we used *ab initio* potential energy functions and the relevant transition dipole moments [L. Yan, W. Meyer, unpublished results], experimentally determined potential functions for the singlet transitions [C. Amiot, J. Mol. Spectrosc. (1991) and C. Amiot, J. Vergès, C.E. Fellows, J. Chem. Phys. (1995)], and the long-range calculation [M. Marinescu, A. Dalgarno, Phys. Rev. A (1995)].

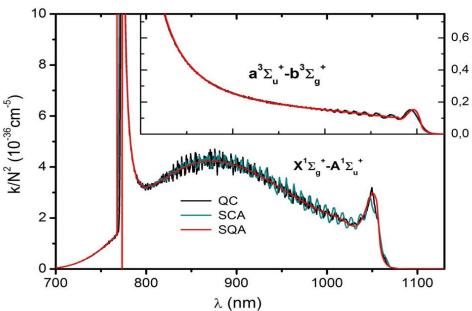
The quantum-mechanical calculation for temperature T = 985 K.

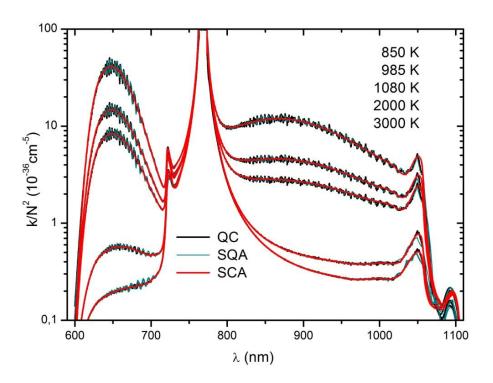




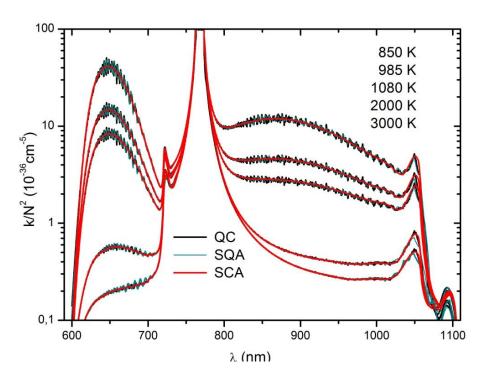
Comparison of QC, SQA and SCA for vapor temperature T = 985 K.

For the calculation of the absorption spectrum of the *B–X* transition, the computer time was: 3000 s for the QC 0.2 s for the SQA and SCA.

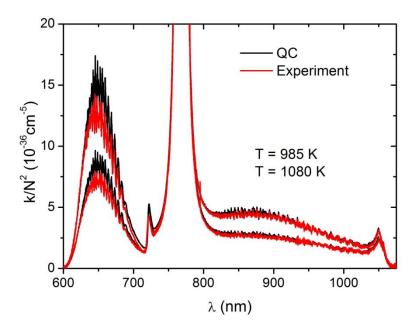




Comparison of QC, SQA and SCA for a range of temperatures.



Comparison of QC, SQA and SCA for a range of temperatures.



We compare experiment [C. Vadla, R. Beuc, V. Horvatic, M. Movre, A. Quentmeier, K. Niemax, Eur. Phys. J. D,2006] and **QC** for two experimental temperatures. A slight increase in the simulated *B–X* band intensity may be attributed to the uncertainty in the *ab initio* transition dipole moments.

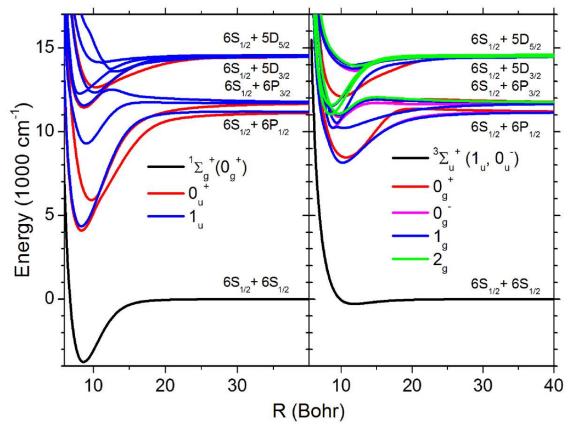
#### Cesium emission and absorption spectra

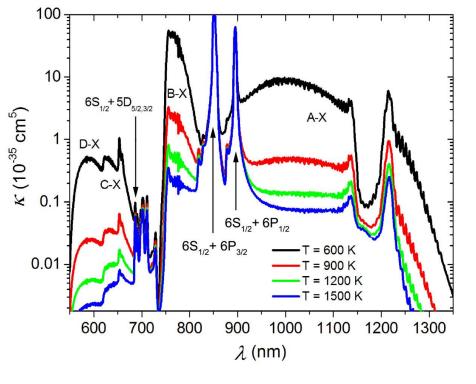
B. Horvatić, R. Beuc, M. Movre, Eur. Phys. J. D, 2015

A recent *ab initio* [A. R. Allouche, M. Aubert-Frécon, J. Chem. Phys. 2012] calculation of  $Cs_2$  electronic potential curves and electronic transition dipole moments provided us with an input for the numerical simulation of  $Cs_2$  spectra.

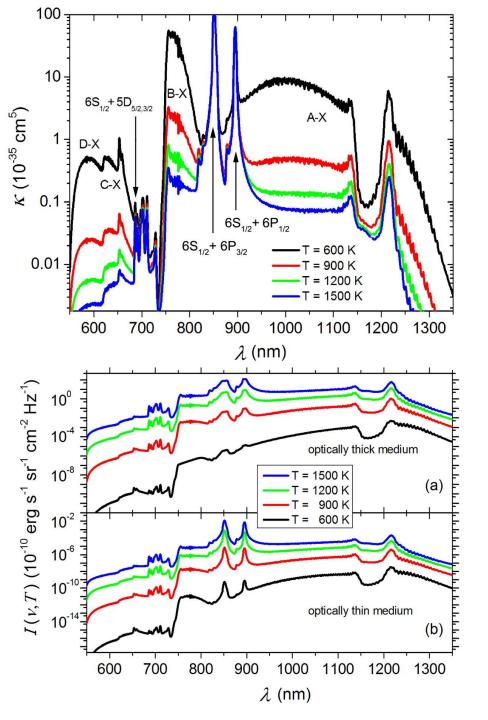
We investigated the red and near–infrared (600 – 1300 nm) absorption and emission spectrum of a cesium vapor for temperatures within the range 600 – 1500 K using SQA.

11 singlet and 19 triplet electronic transitions  $\Lambda'' \rightarrow \Lambda'$  contribute to the absorption spectrum. The computing time was 6 – 60 seconds , depending on the temperature.





Absorption spectra for a range of temperatures.



Absorption spectra for a range of temperatures.

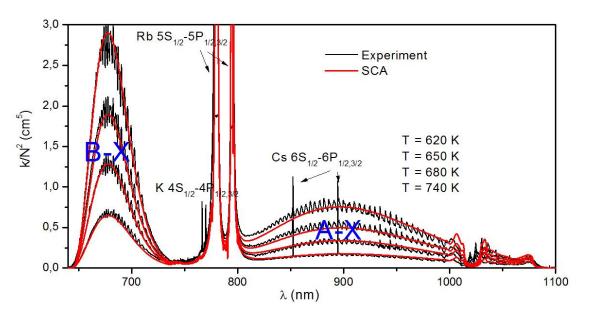
In the LTE approximation, the spectral radiance of a uniform emitting layer (thickness *L*, atomic number density *N*) is:

$$I(v,T) = \frac{2hv^3}{c^2} \frac{1 - e^{-N^2Lk(v,T)[1 - \exp(-hv/k_BT)]}}{e^{hv/k_BT} - 1}$$

(a) optically thick medium  $\kappa N^2 L >> 1$ ,  $N^2 L = 3 \cdot 10^{34}$  cm<sup>-5</sup> (b) optically thin medium  $\kappa N^2 L << 1$ ),  $N^2 L = 10^{29}$  cm<sup>-5</sup>

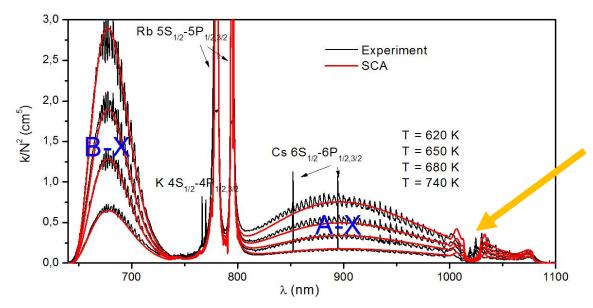
### **Absorption spectra of rubidium dimer**

R. Beuc, M. Movre, V. Horvatic, C. Vadla, O. Dulieu and M. Aymar, Phys.Rev. A, 2007



# **Absorption spectra of rubidium dimer**

R. Beuc, M. Movre, V. Horvatic, C. Vadla, O. Dulieu and M. Aymar, Phys.Rev. A, 2007

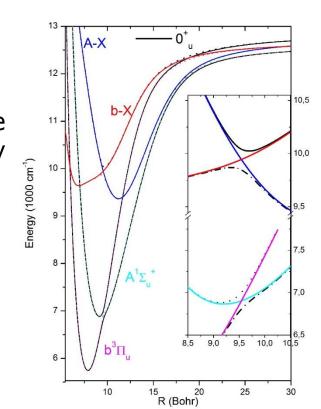


A-X absorption band is formed by a transition from ground  $0^+_g(X^1\Sigma^+_g)$  state to excited states  $0^+_u(A^1\Sigma^+_u)$  and  $0^+_u(b^1\Pi_u)$  coupled by spin-orbit interaction  $V_{so}(R)$ .

In the framework of FGH method, energies and wave functions for coupled states can be determined by diagonalization of  $2N \times 2N$  matrix H

$$H = \begin{pmatrix} T & 0 \\ 0 & T \end{pmatrix} + \begin{pmatrix} V_{A} & V_{so} \\ V_{so} & V_{b} \end{pmatrix} \qquad T_{i,j} = \frac{\hbar^{2}}{2\mu\Delta R^{2}} \begin{cases} \frac{\pi^{2}}{3} - \frac{1}{2i^{2}} & i = j \\ (-1)^{i-j} \frac{8ij}{(i^{2}-j^{2})^{2}} & i \neq j \end{cases}$$

$$\left(V_{A,b}\right)_{i,j} = \left[V_{A,b}(R_{i}) + \frac{\hbar^{2}}{2\mu} \frac{J(J+1)}{R_{i}^{2}}\right] \delta_{i,j} \qquad \left(V_{so}\right)_{i,j} = V_{so}(R_{i}) \delta_{i,j}$$



If the dominant contribution to the spectrum consists of bound-bound transitions, and if the distance between the rotational lines is less than the width of the instrumental profile, the absorption coefficient can be determined using the **vibrational band continuum approximation (VBCA)**; [R.W. Patch, W.L. Shackleford, S.S. Penner. JQSRT, 1962, L.K. Lam, A. Gallagher, and M.M. Hessel, J.Chem.Phys. 1977].

$$k_{b,b}(v,T) = w^{\frac{8\pi^3 v}{3c} \left(\frac{h^2}{2\pi\mu k_B T}\right)^{3/2} \sum_{v'',v'}^{bound} \exp\left(-\frac{E_{v'',\Lambda''}}{k_B T}\right)^{\frac{\left|\left\langle \Phi_{v'',0,\Lambda''}|D(R)|\Phi_{v',0,\Lambda'}\right\rangle\right|^2}{\left|B_{v'}-B_{v''}\right|}} \exp\left(-\frac{B_{v}(E_{v',v''}-hv)}{(B_{v'}-B_{v''})k_B T}\right)$$

VBCA gives good results, if the dominant contribution comes from the transition between the lowest vib-rotational states, where following conditions are satisfied

$$\left|\left\langle \Phi_{\mathbf{v}',J,\Lambda''}|D(R)|\Phi_{\mathbf{v}',J,\Lambda'}\right\rangle\right|\approx\left|\left\langle \Phi_{\mathbf{v}',0,\Lambda''}|D(R)|\Phi_{\mathbf{v}',0,\Lambda'}\right\rangle\right|\qquad \qquad E_{\mathbf{v},J,\Lambda}\approx E_{\mathbf{v},\Lambda}+B_{\nu}J(J+1)$$

# **Hybrid approximation**

Using good properties of SQA and VBCA, we introduced a **hybrid approximation** (HA) of the reduced absorption coefficient:

$$k(v,T) = w \frac{8\pi^{3}v}{3c} \left(\frac{h^{2}}{2\pi\mu k_{B}T}\right)^{3/2} \sum_{v'',v'}^{V'',V'} \exp\left(-\frac{E_{v'',\Lambda''}}{k_{B}T}\right) \frac{\left|\langle \Phi_{v'',0,\Lambda''}|D(R)|\Phi_{v',0,\Lambda'}\rangle\right|^{2}}{|B_{v'}-B_{v''}|} \exp\left(-\frac{B_{v}(E_{v',v''}-hv)}{(B_{v'}-B_{v''})k_{B}T}\right) G(E'',E'',v'',v') + \\ + w \frac{32\pi^{4}v}{3c} \left(\frac{h^{2}}{2\pi\mu k_{B}T}\right)^{1/2} \sum_{v'',v''} \exp\left(-\frac{E(E'',E',v'',v')}{k_{B}T}\right) \left|\langle \Phi_{v'',0,\Lambda''}|RD(R)|\Phi_{v',0,\Lambda'}\rangle\right|^{2} g(hv-hv_{tr})$$

$$G(E'', E'', v'', v', v') = \theta \left( \frac{hv - E_{v', v''}}{B_{v'} - B_{v''}} \right) \theta \left( \min \left[ \frac{E'' - E_{v', \Lambda''}}{B_{v'}}, \frac{E' - E_{v', \Lambda''}}{B_{v'}} \right] - \frac{hv - E_{v', v''}}{B_{v'} - B_{v''}} \right)$$

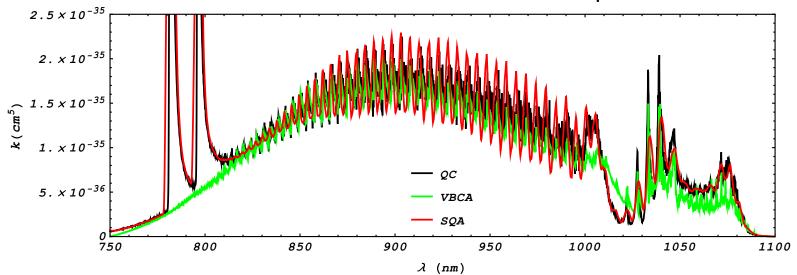
$$E(E'', E'', v'', v') = E_{v'', \Lambda''} \left[ 1 - \theta \left( E'' - E_{v'', \Lambda''} \right) \theta \left( E' - E_{v', \Lambda'} \right) \right]$$

$$+ \min \left[ E'', E' - E_{v', \Lambda'} + E_{v'', \Lambda''} \right] \theta \left( E'' - E_{v'', \Lambda''} \right) \theta \left( E' - E_{v', \Lambda''} \right)$$

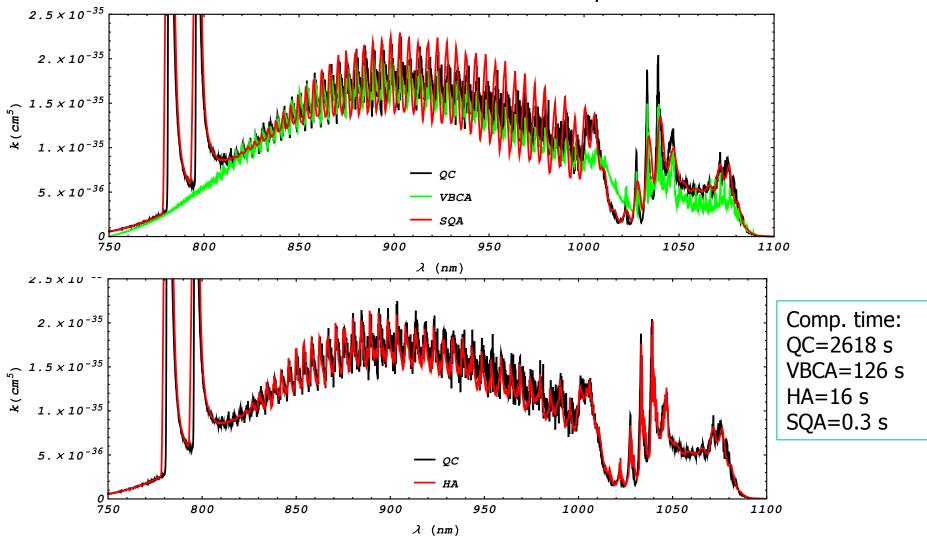
The first contribution to k(v,T) is the VBCA of transitions for which  $E'' \ge E_{v'',J,\Lambda''}$  and  $E' \ge E_{v',J,\Lambda'}$ , and the second contribution is the SQA of all other transitions.

$$\begin{split} E'' &= E_{0,\Lambda''} + x \frac{B_{\nu'=0}^2}{D_{\nu''=0}} \qquad E' = E_{0,\Lambda'} + x \frac{B_{\nu'=0}^2}{D_{\nu'=0}} \\ E'' &\geq E_{\nu'',J,\Lambda''} \qquad E_{\nu'',J,\Lambda''} = E_{\nu'',\Lambda''} + B_{\nu''}J(J+1) \qquad \Phi_{\nu'',J,\Lambda''} \approx \Phi_{\nu'',0,\Lambda''} \\ E' &\geq E_{\nu',J,\Lambda'} \qquad E_{\nu',J,\Lambda'} = E_{\nu',\Lambda'} + B_{\nu'}J(J+1) \qquad \Phi_{\nu',J,\Lambda'} \approx \Phi_{\nu',0,\Lambda'} \end{split}$$

Theoretical simulations of rubidium A-X band at a temperature of 740 K.



Theoretical simulations of rubidium A-X band at a temperature of 740 K.



The hybrid approximation improves the description of the molecular bands structure at a cost of an acceptable increase of the computer time.

# Thank you for your attention

