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According to the Beer-Lambert law, in terms of binary collisions, the 
transmittance T((v,T) of a uniform atomic gas layer with a number density of 

atoms n and length L is                                       where k(v,T) is the 
reduced absorption coefficient of atomic dimer,  is frequency of absorbed 

photon and T is temperature. 
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Reduced absorption coefficient of a dimer 

Λ'' and Λ' label the lower and the upper 
electronic state. VΛ(R) is the interaction potential  
 
Bound (quasi-bound) states: energy Ev,J,Λ , unity-
normalized wave function       , v vibrational and 
J  rotational quantum number 
 
Free states: asymptotic kinetic energy ε , energy-
normalized wave functions  
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Neglecting the differences between even and odd J, assuming the applicability 
of the Q-branch approximation ∆J=0, the thermally averaged absorption 
coefficient  [H.-K. Chung, K. Kirby, J.F. Babb, Phys. Rev. A, 1999,  2001]:  
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Neglecting the differences between even and odd J, assuming the applicability 
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bound (quasi-bound) - bound (quasi-bound) transitions: 
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bound (quasi-bound) –free transition:  
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free - bound (quasi-bound) transitions: 
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free-free transitions:  h
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D(R) is electronic transition dipole moment, w is statistical factor dependent on the 
symmetry of electronic states,  is molecular reduced mass, g line profile. 



Quantum calculation on the Fourier grid (QC) 

The FGR method can be considered as a special 
case of Discrete Variable Representation where 
functions are represented on finite number of 
grid points Ri (i=1…N) . We used a grid of 
uniformly spaced  points, Ri+1- Ri  = ∆R, [D.T. 

Colbert, W.H. Miller, J. Chem. Phys. 1992]. Energies 
and wave functions can be determined by 
diagonalization of NxN Hamiltonian matrix 
H=T+P : 
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The method yields only a discrete set of continuum energies, but in the range 
spanned by the grid the corresponding unity-normalized wave functions do 
represent the states of a true continuum. 



Solving the radial Schrödinger equation on the grid one obtains a set of discrete 
states effectively describing a confined molecule, “a molecule in a box”, and the 
entire spectrum is of the bound–bound type.  

The matrix elements of the transition dipole moment D(R) are computed as:  
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Solving the relevant radial Schrödinger equation on the grid one obtains a set of 
discrete energies effectively describing a confined molecule, “a molecule in a 
box”, and the entire spectrum is of the bound–bound type.  

The matrix elements of the transition dipole moment D(R) are computed as:  
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The parameters of the grid are estimated in the following way:  
                    nB is the number of grid points per de Broglie  wavelength at       
        maximal expected kinetic energy εkin . 
RN   was chosen in order to get closer to the atomic line centre. 
 
 
Line profile g can be approximated with a normalized rectangular instrumental 
profile:  
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Fully quantum-mechanical procedure based on the Fourier grid Hamiltonian  
method, is numerically robust but time consuming.  
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Sodium resonance 3s-3p line 
pressure broadened by helium atoms 

Good agreement with: 
C. Zhu, J. F. Babb and A. Dalgarno, Phys.Rev. A:2006 
K Alioua  , M Bouledroua  ,A R Allouche  and M Aubert-Frécon, J. Phys. B: 2008 



Semiclassical approximation (SCA) 

Introducing a continuous variable Y = J(J + 1) and 
change  
 
Any unity-normalized wave function Φv can be turned 
into an energy-normalized wave function  
and the sum can be changed into the integral 
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The  absorption  coefficient can be written as:  
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Using energy-normalized wave functions in the WKB form, and the standard 
approximations, one obtains: 
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Sumation is over the Condon points Ri satisfying the condition                 .  hRi  )(



Neglecting the rapidly oscillating terms , one obtains coherent quasi-static 
formula of the reduced absorption coefficient : 
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Quasi-static formula generally gives a good description of the absorption 
coefficient, but diverges in difference potential extremes (classical 
singularity).  
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Elementary profile type: 
1. Difference potential Δ(R) is a monotonic function, one real Condon point R1 
2. Difference potential Δ(R) is a monotonic function, one inflection point RI, 

one real Condon point R1  and complex pair of Condon points  R2,3  
3. Difference potential Δ(R) has extrema , two Condon points R1,2 

If difference potential Δ(R) has more extremes, absorption profile can be 

obtained by combining the elementary profiles. 

Quasi-static formula generally gives a good description of the absorption 
coefficient, but diverges in difference potential extremes (classical 
singularity).  

This divergence can be removed by mapping of the semi-classical canonic 
integral phase, into the characteristic form of the elementary "fold" or 
"cusp" catastrophe. 
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2. Difference potential Δ(R) has one inflection point RI   

transitive Pearcey approximation 
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If Y(v,T)>5 or X(T)>5,  what is the most 
common case, 1),( TLc 
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J.N.L. Connor, R.A.  Marcus, J. Chem. Phys. 1971 
K.M. Sando, J.C. Wormhoudt , Phys. Rev. A 1973 
J. Szudy, W.E. Baylis, JQSRT  1975 
P.A. Vicharelli,  C.B. Collins, SLS1983  
R. Beuc and V. Horvatic: J. Phys. B: 1992      
R. Beuc, B. Horvatić, M. Movre, J. Phys. B, 2010  1.0
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uniform Airy approximation 



The standard semiclassical approximation does not give the rovibrational 
structure of the molecular bands, neglects the effects of turning points, but 
agrees perfectly with the averaged-out  quantum-mechanical spectra.  
Also, the semiclassical theory can give a physical interpretation of the results 
obtained by fully quantum- mechanical calculations (W. H. Miller).  



Semiquantum approximation (SQA) 
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Turning energy-normalized wave functions  to unity-normalized wave functions 
one obtains 
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Using standard semiclassical approximations, we calculated integral :  
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By comparison with the semi-classical form of reduced absorption coefficient, 
we get expression: 

One can approximate the integrals by sums  



and obtain a quantum-like (“quasiquantum” or “semiquantum”) expression.  
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In order to evaluate this relation, one needs to know the vibrational energies 
and the corresponding wave functions for J = 0 only. 
Semiquantum approximation gives good results if the distance between the 
vibrational transitions                          is comparable or less than the width 
of the instrumental profile g.  
The semiquantum spectrum was collected in bins of the size Δhν = 10 cm-1 
and smoothed out with a simple unity-normalized triangular profile having a 
width of 50 cm-1. 
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and obtain a quantum-like (“quasiquantum” or “semiquantum”) expression.  
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The semiquantum approximation is in very good agreement with fully 
quantum calculations, while its computer time consumption can be lower by 
four orders of magnitude.  
A disadvantage of this method is an unsatisfactory description of the discrete 
structure of molecular bands.  
However, even the low-resolution absorption spectroscopy may serve as a 
valuable tool for checking the accuracy of molecular electronic structure 
calculations, and for gas temperature and number density diagnostics .  

In order to evaluate this relation, one needs to know the vibrational energies 
and the corresponding wave functions for J = 0 only. 
Semiquantum approximation gives good results if the distance between the 
vibrational transitions                          is comparable or less than the width 
of the instrumental profile g.  
The semiquantum spectrum was collected in bins of the size Δhν = 10 cm-1 
and smoothed out with a simple unity-normalized triangular profile having a 
width of 50 cm-1. 
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R. Beuc, M. Movre, B. Horvatić, Eur. Phys. J. D, 2014 

In the theoretical simulation we used ab initio 
potential energy functions and the relevant transition 
dipole moments [L. Yan, W. Meyer, unpublished results], 
experimentally determined potential functions for the 
singlet transitions [C. Amiot, J. Mol. Spectrosc. (1991) and 

C. Amiot, J. Vergès, C.E. Fellows, J. Chem. Phys. (1995)], 
and the long-range  calculation  [M. Marinescu, A. 

Dalgarno, Phys. Rev. A (1995)]. 

Absorption spectra of potassium molecule  

The quantum-mechanical calculation 
for temperature T = 985 K.  



Comparison of QC, SQA and SCA for 
vapor temperature T = 985 K.  
  

For the calculation of the 
absorption spectrum of the B–X 
transition, the computer time was: 
3000 s for the QC 
0.2 s for the SQA and SCA. 



Comparison of QC, SQA and SCA for 
a range of temperatures.  



Comparison of QC, SQA and SCA for 
a range of temperatures.  

We compare experiment [C. Vadla, R. Beuc, 

V. Horvatic, M. Movre, A. Quentmeier, K. 

Niemax, Eur. Phys. J. D,2006] and QC for 
two experimental temperatures. A slight 
increase in the simulated B–X band 
intensity may be attributed to the 
uncertainty in the ab initio transition 
dipole moments.  



Cesium emission and absorption spectra 

 B. Horvatić, R. Beuc, M. Movre, Eur. Phys. J. D, 2015 

A recent ab initio [A. R. Allouche, M. Aubert-Frécon, J. Chem. Phys. 2012] calculation 
of Cs2 electronic potential curves and electronic transition dipole moments 
provided us with an input for the numerical simulation of Cs2 spectra.  
We investigated the red and near–infrared (600 – 1300 nm) absorption and 
emission spectrum of a cesium vapor for temperatures within the range 600 – 
1500 K using SQA. 

11 singlet and 19 triplet 
electronic transitions Λ''  
Λ' contribute to the 
absorption spectrum.  
The computing time was 6 
– 60 seconds , depending 
on the temperature. 



Absorption spectra for a range of 
temperatures.  



In the LTE approximation, the spectral 
radiance of a uniform emitting layer 
(thickness L, atomic number density  N) 
is: 
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(a) optically thick medium  
    κN 2L >> 1, N 2L = 3 ·1034 cm-5 
(b) optically thin medium 
    κN 2L << 1),  N 2L = 1029 cm-5 

Absorption spectra for a range of 
temperatures.  



Absorption spectra of rubidium dimer 

R. Beuc, M. Movre, V. Horvatic, C. Vadla, O. Dulieu and M. Aymar , Phys.Rev. A, 2007  



Absorption spectra of rubidium dimer 

R. Beuc, M. Movre, V. Horvatic, C. Vadla, O. Dulieu and M. Aymar , Phys.Rev. A, 2007  

In the framework of FGH method, energies and wave 
functions for coupled states can be determined by 
diagonalization of 2N x 2N matrix H 



















bso

soA

VV

VV

T

T
H

0

0

 
  



















 ji

ji
T

ji

ijji
i

Rji
222

2

2

2

2

8

2

1
3

2, 1







   
jiR

JJ

ibAjibA
i

RVV ,

)1(

2,,, 2

2

)( 


   

jiisojiso RVV ,,
)( 

A-X absorption band is formed 
by a transition from ground 
0+

g(X
1Σ+

g) state to excited 
states 0+

u(A
1Σ+

u) and 0+
u(b

1Πu)  
coupled by spin-orbit 
interaction Vso(R).  
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If the dominant contribution to the spectrum consists of bound-bound transitions, 
and if the distance between the rotational lines is less than the width of the 
instrumental profile, the absorption coefficient can be determined using the 
vibrational band continuum approximation (VBCA); [R.W. Patch, W.L. 

Shackleford, S.S. Penner. JQSRT, 1962,  L.K. Lam, A. Gallagher, and M.M. Hessel,  J.Chem.Phys. 1977]. 

VBCA gives good results, if the dominant contribution comes from the transition 
between the lowest vib-rotational states, where following conditions are satisfied  



Hybrid approximation 
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Using good properties of SQA and VBCA, we introduced a hybrid approximation 
(HA) of the reduced absorption coefficient: 
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The first contribution to k(v,T) is the VBCA of transitions for which                 and                                                       

   , and the second contribution is the SQA of all other transitions. 
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Theoretical simulations of rubidium A-X band at a temperature of 740 K.  
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Theoretical simulations of rubidium A-X band at a temperature of 740 K.  
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Comp. time: 
QC=2618 s 
VBCA=126 s 
HA=16 s  
SQA=0.3 s 

The hybrid approximation improves the description of the molecular bands  
structure  at a cost of an acceptable increase of the computer time. 
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